• Map集合---BST实现


    摘要:不多说直接上代码

    import java.util.ArrayList;
    
    public class BSTMap<K extends Comparable<K>, V> implements Map<K, V> {
    
        private class Node{
            public K key;
            public V value;
            public Node left, right;
    
            public Node(K key, V value){
                this.key = key;
                this.value = value;
                left = null;
                right = null;
            }
        }
    
        private Node root;
        private int size;
    
        public BSTMap(){
            root = null;
            size = 0;
        }
    
        @Override
        public int getSize(){
            return size;
        }
    
        @Override
        public boolean isEmpty(){
            return size == 0;
        }
    
        // 向二分搜索树中添加新的元素(key, value)
        @Override
        public void add(K key, V value){
            root = add(root, key, value);
        }
    
        // 向以node为根的二分搜索树中插入元素(key, value),递归算法
        // 返回插入新节点后二分搜索树的根
        private Node add(Node node, K key, V value){
    
            if(node == null){
                size ++;
                return new Node(key, value);
            }
    
            if(key.compareTo(node.key) < 0)
                node.left = add(node.left, key, value);
            else if(key.compareTo(node.key) > 0)
                node.right = add(node.right, key, value);
            else // key.compareTo(node.key) == 0
                node.value = value;
    
            return node;
        }
    
        // 返回以node为根节点的二分搜索树中,key所在的节点
        private Node getNode(Node node, K key){
    
            if(node == null)
                return null;
    
            if(key.equals(node.key))
                return node;
            else if(key.compareTo(node.key) < 0)
                return getNode(node.left, key);
            else // if(key.compareTo(node.key) > 0)
                return getNode(node.right, key);
        }
    
        @Override
        public boolean contains(K key){
            return getNode(root, key) != null;
        }
    
        @Override
        public V get(K key){
    
            Node node = getNode(root, key);
            return node == null ? null : node.value;
        }
    
        @Override
        public void set(K key, V newValue){
            Node node = getNode(root, key);
            if(node == null)
                throw new IllegalArgumentException(key + " doesn't exist!");
    
            node.value = newValue;
        }
    
        // 返回以node为根的二分搜索树的最小值所在的节点
        private Node minimum(Node node){
            if(node.left == null)
                return node;
            return minimum(node.left);
        }
    
        // 删除掉以node为根的二分搜索树中的最小节点
        // 返回删除节点后新的二分搜索树的根
        private Node removeMin(Node node){
    
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                return rightNode;
            }
    
            node.left = removeMin(node.left);
            return node;
        }
    
        // 从二分搜索树中删除键为key的节点
        @Override
        public V remove(K key){
    
            Node node = getNode(root, key);
            if(node != null){
                root = remove(root, key);
                return node.value;
            }
            return null;
        }
    
        private Node remove(Node node, K key){
    
            if( node == null )
                return null;
    
            if( key.compareTo(node.key) < 0 ){
                node.left = remove(node.left , key);
                return node;
            }
            else if(key.compareTo(node.key) > 0 ){
                node.right = remove(node.right, key);
                return node;
            }
            else{   // key.compareTo(node.key) == 0
    
                // 待删除节点左子树为空的情况
                if(node.left == null){
                    Node rightNode = node.right;
                    node.right = null;
                    size --;
                    return rightNode;
                }
    
                // 待删除节点右子树为空的情况
                if(node.right == null){
                    Node leftNode = node.left;
                    node.left = null;
                    size --;
                    return leftNode;
                }
    
                // 待删除节点左右子树均不为空的情况
    
                // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                // 用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                successor.right = removeMin(node.right);
                successor.left = node.left;
    
                node.left = node.right = null;
    
                return successor;
            }
        }
    
        public static void main(String[] args){
    
            System.out.println("Working Directory = " + System.getProperty("user.dir"));
    
            System.out.println("Pride and Prejudice");
    
            ArrayList<String> words = new ArrayList<>();
            if(FileOperation.readFile("pride-and-prejudice.txt", words)) {
                System.out.println("Total words: " + words.size());
    
                BSTMap<String, Integer> map = new BSTMap<>();
                for (String word : words) {
                    if (map.contains(word))
                        map.set(word, map.get(word) + 1);
                    else
                        map.add(word, 1);
                }
    
                System.out.println("Total different words: " + map.getSize());
                System.out.println("Frequency of PRIDE: " + map.get("pride"));
                System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
            }
    
            System.out.println();
        }
    }
    
  • 相关阅读:
    十款最实用的Android UI设计工具
    tom大叔blog--------深入理解javascript系列-----------笔记
    右键
    指尖下的js —— 多触式web前端开发之三:处理复杂手势
    关于移动端点击后出现闪或者黑色背景
    修改wamp的WWW目录
    Unicode中文排序
    jquery 小记
    pageX,clientX,offsetX,layerX的区别
    为什么 ["1", "2", "3"].map(parseInt) 返回 [1,NaN,NaN]?【转】
  • 原文地址:https://www.cnblogs.com/Qvolcano-blog/p/14604345.html
Copyright © 2020-2023  润新知