• TuShare模块的应用


    一.TuShare简介和环境安装

    ​    TuShare是一个著名的免费、开源的python财经数据接口包。其官网主页为:TuShare -财经数据接口包。该接口包如今提供了大量的金融数据,涵盖了股票、基本面、宏观、新闻的等诸多类别数据(具体请自行查看官网),并还在不断更新中。TuShare可以基本满足量化初学者的回测需求
    
    ​    环境安装:pip install tushare。如果是老版本升级,可以用升级命令pip install tushare --upgrade3,在python中导入包:import tushare as ts
    
    
    

    二.Tushare的应用

    ​ 我们主要还是应该掌握如何用tushare获取股票行情数据,使用的是ts.get_hist_data()函数或者ts.get_k_data()函数。

    输入参数为:
    
    ​        code:股票代码,即6位数字代码,或者指数代码(sh=上证指数 sz=深圳成指 hs300=沪深300指数 sz50=上证50 zxb=中小板 cyb=创业板)
    
    ​        start:开始日期,格式YYYY-MM-DD
    
    ​        end:结束日期,格式YYYY-MM-DD
    
    ​        ktype:数据类型,D=日k线 W=周 M=月 5=5分钟 15=15分钟 30=30分钟 60=60分钟,默认为D
    
    ​        retry_count:当网络异常后重试次数,默认为3
    
    ​        pause:重试时停顿秒数,默认为0
    
    ​        返回值说明:
    
    ​        date:日期
    
    ​        open:开盘价
    
    ​        high:最高价
    
    ​        close:收盘价
    
    ​        low:最低价
    
    ​        volume:成交量
    
    ​        price_change:价格变动
    
    ​        p_change:涨跌幅
    
    ​        ma5:5日均价
    
    ​        ma10:10日均价
    
    ​        ma20:20日均价
    
    ​        v_ma5:5日均量
    
    ​        v_ma10:10日均量
    
    ​        v_ma20:20日均量
    
    ​        turnover:换手率[注:指数无此项]
    

    1:使用tushare包获取某股票的历史行情数据。

    import tushare as ts
    
    # 使用tushare包获取某股票的历史行情数据。
    df = ts.get_k_data(code='600519',start='2000-01-01')
    
    # 将从Tushare中获取的数据存储至本地
    df.to_csv("600519.csv")
    
    # 将原数据中的时间作为行索引,并将字符串类型的时间序列化成时间对象类型
    # 将date这一列作为源数据的行索引且将数据类型转成时间类型
    df = pd.read_csv('./600519.csv',index_col='date',parse_dates=['date'])
    
    df.drop(labels='Unnamed: 0',axis=1,inplace=True)
    # 多出来一行 Unnamed: 0 ,需要去掉它
    # inplace默认值为false 将删除的操作映射到原数据
    

    2:输出该股票所有收盘比开盘上涨3%以上的日期。

    #指定条件
    #输出该股票所有收盘比开盘上涨3%以上的日期。
    #(收盘-开盘)/开盘 >= 0.03
    df['close'] - df['open'] / df['open'] >= 0.03
    
    # 打印结果:
    date
    2001-08-27    True
    2001-08-28    True
    2001-08-29    True
    2001-08-30    True
    2001-10-12    True
                  ... 
    
    2019-08-02    True
    2019-08-05    True
    2019-08-06    True
    2019-08-07    True
    2019-08-08    True
    2019-08-09    True
    
    
    #将上述表达式返回的布尔值作为df的行索引:取出了所有符合需求的行数据
    df.loc[(df['close']-df['open']) / df['open'] >= 0.03] 
    
    # 打印结果:
    open	close	high	low	volume	code
    date						
    2001-08-27	5.392	5.554	5.902	5.132	406318.00	600519
    2001-08-28	5.467	5.759	5.781	5.407	129647.79	600519
    2001-09-10	5.531	5.734	5.757	5.470	18878.89	600519
    ...	...	...	...	...	...	...
    2004-11-25	9.251	9.561	9.676	9.251	5924.14	600519
    ...	...	...	...	...	...	...
    2017-11-16	676.406	709.043	709.881	676.406	60716.00	600519
    ...	...	...	...	...	...	...
    2019-04-10	903.000	947.990	951.900	900.000	67814.00	600519
    2019-04-16	904.900	939.900	939.900	901.220	46423.00	600519
    2019-05-10	875.660	907.120	910.780	868.190	79907.00	600519
    2019-05-15	890.240	927.000	933.000	890.240	63124.00	600519
    2019-06-11	876.000	910.890	915.610	875.000	80106.00	600519
    2019-06-20	932.500	975.000	975.500	932.200	67271.00	600519
    
    df.loc[(df['close'] - df['open']) / df['open'] >= 0.03].index
    # index 取到行索引
    df.loc[(df['close'] - df['open']) / df['open'] >= 0.03].index
    
    # 打印结果:
    DatetimeIndex(['2001-08-27', '2001-08-28', '2001-09-10', '2001-12-21',
                   '2002-01-18', '2002-01-31', '2003-01-14', '2003-10-29',
                   '2004-01-05', '2004-01-14',
                   ...
                   '2019-01-15', '2019-02-11', '2019-03-01', '2019-03-18',
                   '2019-04-10', '2019-04-16', '2019-05-10', '2019-05-15',
                   '2019-06-11', '2019-06-20'],
                  dtype='datetime64[ns]', name='date', length=301, freq=None)
    
    

    3:输出该股票所有开盘比前日收盘跌幅超过2%的日期。

    #输出该股票所有开盘比前日收盘跌幅超过2%的日期。
    #(开盘 - 前日收盘) / 前日收盘  < -0.02
    # df['close'].shift(1)) 收盘数据往下移一位
    
    (df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02
    
    
    # 打印结果
    DatetimeIndex(['2001-09-12', '2002-06-26', '2002-12-13', '2004-07-01',
                   '2004-10-29', '2006-08-21', '2006-08-23', '2007-01-25',
                   '2007-02-01', '2007-02-06', '2007-03-19', '2007-05-21',
                   '2007-05-30', '2007-06-05', '2007-07-27', '2007-09-05',
                   '2007-09-10', '2008-03-13', '2008-03-17', '2008-03-25',
                   '2008-03-27', '2008-04-22', '2008-04-23', '2008-04-29',
                   '2008-05-13', '2008-06-10', '2008-06-13', '2008-06-24',
                   '2008-06-27', '2008-08-11', '2008-08-19', '2008-09-23',
                   '2008-10-10', '2008-10-15', '2008-10-16', '2008-10-20',
                   '2008-10-23', '2008-10-27', '2008-11-06', '2008-11-12',
                   '2008-11-20', '2008-11-21', '2008-12-02', '2009-02-27',
                   '2009-03-25', '2009-08-13', '2010-04-26', '2010-04-30',
                   '2011-08-05', '2012-03-27', '2012-08-10', '2012-11-22',
                   '2012-12-04', '2012-12-24', '2013-01-16', '2013-01-25',
                   '2013-09-02', '2014-04-25', '2015-01-19', '2015-05-25',
                   '2015-07-03', '2015-07-08', '2015-07-13', '2015-08-24',
                   '2015-09-02', '2015-09-15', '2017-11-17', '2018-02-06',
                   '2018-02-09', '2018-03-23', '2018-03-28', '2018-07-11',
                   '2018-10-11', '2018-10-24', '2018-10-25', '2018-10-29',
                   '2018-10-30', '2019-05-06', '2019-05-08'],
                  dtype='datetime64[ns]', name='date', freq=None)
    
    
    # 取出符合要求的行数据
    df.loc[(df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02]
    
    df.loc[(df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02].index
    
    # 执行结果为:
    DatetimeIndex(['2001-09-12', '2002-06-26', '2002-12-13', '2004-07-01',
                   '2004-10-29', '2006-08-21', '2006-08-23', '2007-01-25',
                   '2007-02-01', '2007-02-06', '2007-03-19', '2007-05-21',
                   '2007-05-30', '2007-06-05', '2007-07-27', '2007-09-05',
                   '2007-09-10', '2008-03-13', '2008-03-17', '2008-03-25',
                   '2008-03-27', '2008-04-22', '2008-04-23', '2008-04-29',
                   '2008-05-13', '2008-06-10', '2008-06-13', '2008-06-24',
                   '2008-06-27', '2008-08-11', '2008-08-19', '2008-09-23',
                   '2008-10-10', '2008-10-15', '2008-10-16', '2008-10-20',
                   '2008-10-23', '2008-10-27', '2008-11-06', '2008-11-12',
                   '2008-11-20', '2008-11-21', '2008-12-02', '2009-02-27',
                   '2009-03-25', '2009-08-13', '2010-04-26', '2010-04-30',
                   '2011-08-05', '2012-03-27', '2012-08-10', '2012-11-22',
                   '2012-12-04', '2012-12-24', '2013-01-16', '2013-01-25',
                   '2013-09-02', '2014-04-25', '2015-01-19', '2015-05-25',
                   '2015-07-03', '2015-07-08', '2015-07-13', '2015-08-24',
                   '2015-09-02', '2015-09-15', '2017-11-17', '2018-02-06',
                   '2018-02-09', '2018-03-23', '2018-03-28', '2018-07-11',
                   '2018-10-11', '2018-10-24', '2018-10-25', '2018-10-29',
                   '2018-10-30', '2019-05-06', '2019-05-08'],
                  dtype='datetime64[ns]', name='date', freq=None)
    

    4:假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?

    price_last = df['open'][-1]
    df = df['2010-01':'2019-01'] #剔除首尾无用的数据
    #Pandas提供了resample函数用便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样:
    df_monthly = df.resample("M").first()
    df_yearly = df.resample("A").last()[:-1] 
    #去除最后一年
    # [:-1] 把19年去掉,还没到19年底,19年只买了,还没卖
    
    
    ost_money
    cost_money = df_monthly['open'].sum()*100
    # cost_money  3339687.1
    
    df_yearly['open'].sum()*1200
    # 12个月 一个月买100支    2948584.7999999993
    
    recv_monry = df['open'][-1] * 800 + df_yearly['open'].sum()*1200
    # df['open'][-1] * 800 为19年还剩的钱,今天是8月份 800支
    
    recv_monry - cost_money
    # 391697.69999999925
    
    

    循环的方式实现

    price_last = df['open'][-1]
    df = df['2010-01':'2019-01'] #剔除首尾无用的数据
    #Pandas提供了resample函数用便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样:
    df_monthly = df.resample("M").first()
    df_yearly = df.resample("A").last()[:-1] 
    #去除最后一年
    # [:-1] 把19年去掉,还没到19年底,19年只买了,还没卖
    cost_money = 0
    hold = 0 #每年持有的股票
    for year in range(2010, 2019):
        
        cost_money -= df_monthly.loc[str(year)]['open'].sum()*100
        hold += len(df_monthly[str(year)]['open']) * 100
        if year != 2019:
            cost_money += df_yearly[str(year)]['open'][0] * hold
            hold = 0 #每年持有的股票
    cost_money += hold * price_last
    
    print(cost_money)
    
    
  • 相关阅读:
    C#开源爬虫NCrawler源代码解读以及将其移植到python3.2(3)
    C#开源爬虫NCrawler源代码解读以及将其移植到python3.2(2)
    C#开源爬虫NCrawler源代码解读以及将其移植到python3.2(1)
    python将项目文件打包发布的脚本(保留原来的项目结构)
    .net stream 转成 bytes[] 的实例和注意事项
    大区间素数筛选(POJ 2689)
    B. Duff in Love
    A. Duff and Meat
    NEFU_117素数个数的位数
    HDU_5504 GT and sequence
  • 原文地址:https://www.cnblogs.com/Quantum-World/p/11342964.html
Copyright © 2020-2023  润新知