正题
题目链接:https://uoj.ac/problem/454
题目大意
(Alice)有一个长度为(2n)的(01)串,(Bob)有(n)个在([1,2n])位置的下标表示它想要得到(01)串中这些位置的值,现在两个人可以向对方传输不超过(m)个(0/1)字符,要求使得(Bob)可以得到答案。
(1leq nleq 1000,m=1350)
解题思路
两种方法,都是平均两边的传输信息。
第一种方法是从左到右传输(01)串,由(Bob)考虑若一个位置需要传输,那么传输(1),然后(Alice)传输这个位置给他并考虑下一个位置。否则传输(0),然后(Alice)跳过这个位置传输下一个位置给她然后再考虑下一个位置。
不难发现这样对于(01)隔开的情况可以省略很多次数,所以我们直接随机打乱整个序列然后这样做即可。
第二种方法是将序列分为三块,(Bob)用二进制告诉(Alice)需要信息最多的那个块。然后剩下两个块由(Bob)告诉(Alice)需要传输哪些位置。
这样的次数(Alice)严格小于(frac{2}{3}n imes 2),(Bob)严格小于(frac{4}{3}n+2),都在(1350)次内。
因为第二种方法比较普遍所以代码使用的是第一种方法
code
Alice
#include <iostream>
#include <fstream>
#include <string>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
using namespace std;
ifstream fin;
char get_bit() {
return getchar();
}
void send_bit(char ch) {
putchar(ch);
fflush(stdout);
}
int n, m,c[2100],r[2100];
string s;
void init_t() {
fin.open("alice.in");
fin >> n >> m >> s;
}
int Z=17;
int randd(){
Z++;
return (Z*1931ll+Z*Z*3ll)%32767;
}
int main()
{
init_t();
for(int i=1;i<=2*n;i++)r[i]=i;
for(int i=1;i<=20*n;i++)swap(r[randd()%(2*n)+1],r[randd()%(2*n)+1]);
for(int i=1;i<=2*n;i++)c[r[i]]=s[i-1];
int i=1;
// for(int i=1;i<=2*n;i++)send_bit(c[i]);
while(i<=2*n){
char z=get_bit();
if(z==EOF)break;
if(z=='1'){send_bit(c[i]);i++;}
else{i++;if(i>2*n)break;send_bit(c[i]);i++;}
}
return 0;
}
Bob
#include <iostream>
#include <fstream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
ifstream fin;
char get_bit() {
return getchar();
}
void send_bit(char ch) {
putchar(ch);
fflush(stdout);
}
const int N = 1000;
int n, m, p[N + 1],r[N*2+10],w[N*2+10];
char s[N+1];
ofstream fout;
void answer() {
fout.open("bob.out");
for(int i=1;i<=n;i++)
fout<<s[i];
fout<<endl;
exit(0);
}
void init_t() {
int x;
fin.open("bob.in");
fin >> n >> m;
for (x = 1; x <= n; ++x) fin >> p[x];
}
int Z=17;
int randd(){
Z++;
return (Z*1931ll+Z*Z*3ll)%32767;
}
int main() {
init_t();
for(int i=1;i<=2*n;i++)r[i]=i;
for(int i=1;i<=20*n;i++)swap(r[randd()%(2*n)+1],r[randd()%(2*n)+1]);
for(int i=1;i<=n;i++)p[i]=r[p[i]],w[p[i]]=i;
sort(p+1,p+1+n);
int z=1,i=1;
while(i<=n){
if(p[i]==z){send_bit('1');s[w[p[i]]]=get_bit();z++;i++;}
else{
send_bit('0');z++;
if(z>2*n)break;
s[w[p[i]]]=get_bit();
if(p[i]==z)i++;z++;
}
}
answer();
return 0;
}