正题
题目链接:https://www.luogu.com.cn/problem/AT5661
题目大意
一个包含(A,B,C)的序列,每次可以选择相邻的两个除了(AB)和(BA)的删去。
求有多少个长度为(N)的序列可以删完。
(1leq Nleq 10^7)
解题思路
因为每次是删除一个奇数位置和一个偶数位置,如果我们把所有偶数位置的取反,那么就变成了不能删除(AA)和(BB)。
然后如果在边上(A)一定可以删(除非到边界),也就是(A)的数量不能超过(frac{n}{2}),同理(B)也是。
然后减去(A)大于的或者(B)大于的就好了(因为只能有一个大于)
时间复杂度(O(n))
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e7+10,P=998244353;
ll n,pw[N],inv[N],fac[N],ans;
ll C(ll n,ll m)
{return fac[n]*inv[m]%P*inv[n-m]%P;}
signed main()
{
scanf("%lld",&n);
pw[0]=ans=inv[1]=1;
for(ll i=2;i<=n;i++)inv[i]=P-(P/i)*inv[P%i]%P;
inv[0]=fac[0]=1;
for(ll i=1;i<=n;i++)
fac[i]=fac[i-1]*i%P,inv[i]=inv[i-1]*inv[i]%P;
for(ll i=1;i<=n;i++)
ans=ans*3%P,pw[i]=pw[i-1]*2%P;
for(ll i=n/2+1;i<=n;i++)
ans=(ans-pw[n-i]*C(n,i)%P*2%P+P)%P;
printf("%lld
",ans);
return 0;
}