正题
题目链接:https://www.luogu.com.cn/problem/P3288
题目大意
给出(n)个点(m)条边的一张图,没条边(i)流量为(c_i),费用是(d_i),然后缩小一个流量费用是(a_i),增加一个流量费用是(b_i)。
要求改动图之后最大流不减少
假设减少的费用是(Delta X),改动次数是(k),求最大化(frac{Delta X}{k})
(1leq nleq 5000,1leq mleq 3000)
解题思路
因为最大流不减少,那么显然因为初始边,最大流也不能增加,所以,每次肯定是选一条回路增流或者退流,这样就是把增流的丢到环上退流的去。
然后对于一条边增流的费用就是(a_i-d_i),退流的费用是(b_i+d_i)
然后最大化的那个显然是一个分数规划,就直接二分答案然后边权加上答案看有没有负环就好了。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=5e3+10;
struct node{
int to,next;
double w;
}a[N<<1];
int n,m,tot,ls[N],cnt[N];
double f[N];bool v[N];queue<int> q;
void addl(int x,int y,double w){
a[++tot].to=y;
a[tot].next=ls[x];
a[tot].w=w;
ls[x]=tot;return;
}
bool SPFA(double w){
for(int i=1;i<=n+2;i++)f[i]=1e100,cnt[i]=0;
q.push(n+1);f[n+1]=cnt[n+1]=0;
while(!q.empty()){
int x=q.front();q.pop();v[x]=0;
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
if(f[x]+a[i].w+w<f[y]){
f[y]=f[x]+a[i].w+w;
cnt[y]=cnt[x]+1;
if(cnt[y]>=n&&a[i].w<0)return 1;
if(!v[y])q.push(y),v[y]=1;
}
}
}
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;double A,B,C,D;
scanf("%d%d",&x,&y);
scanf("%lf%lf%lf%lf",&A,&B,&C,&D);
// if(x==n+1)A=0,B=0,D=0;
if(C>0)addl(y,x,A-D);
addl(x,y,B+D);
}
double l=0,r=1e8;
for(int i=1;i<=100;i++){
double mid=(l+r)/2.0;
if(SPFA(mid))l=mid;
else r=mid;
}
printf("%.2lf
",(l+r)/2.0);
return 0;
}