• 【洛谷 P1251】 餐巾计划问题 (费用流)


    题目链接
    我做的网络流24题里的第一题。。
    想是不可能想到的,只能看题解。

    首先,我们拆点,将一天拆成晚上和早上,每天晚上会受到脏餐巾(来源:当天早上用完的餐巾,在这道题中可理解为从原点获得),每天早上又有干净的餐巾(来源:购买、快洗店、慢洗店)。
    
    1.从原点向每一天晚上连一条流量为当天所用餐巾x,费用为0的边,表示每天晚上从起点获得x条脏餐巾。
    
    2.从每一天早上向汇点连一条流量为当天所用餐巾x,费用为0的边,每天白天,表示向汇点提供x条干净的餐巾,流满时表示第i天的餐巾够用 。
    
    3.从每一天晚上向第二天晚上连一条流量为INF,费用为0的边,表示每天晚上可以将脏餐巾留到第二天晚上(注意不是早上,因为脏餐巾在早上不可以使用)。
    
    4.从每一天晚上向这一天+快洗所用天数t1的那一天早上连一条流量为INF,费用为快洗所用钱数的边,表示每天晚上可以送去快洗部,在地i+t1天早上收到餐巾 。
    
    5.同理,从每一天晚上向这一天+慢洗所用天数t2的那一天早上连一条流量为INF,费用为慢洗所用钱数的边,表示每天晚上可以送去慢洗部,在地i+t2天早上收到餐巾 。
    
    6.从起点向每一天早上连一条流量为INF,费用为购买餐巾所用钱数的边,表示每天早上可以购买餐巾 。 注意,以上6点需要建反向边!3~6点需要做判断(即连向的边必须<=n)
    

    (懒得写了)(摘自洛谷题解)

    #include <cstdio>
    #include <cstring>
    #include <queue>
    using namespace std;
    #define INF 2147483647
    typedef long long ll;
    const int MAXN = 4010;
    const int MAXM = 40010;
    queue <int> q; 
    int s, t, now, n, m;
    struct Edge{
        int from, next, to, rest, cost;
    }e[MAXM];
    int head[MAXN], num = 1, vis[MAXN], Flow[MAXN], pre[MAXN];
    ll dis[MAXN], mincost;
    inline void Add(int from, int to, int flow, int cost){
        e[++num] = (Edge){ from, head[from], to, flow, cost }; head[from] = num;
        e[++num] = (Edge){ to, head[to], from, 0, -cost }; head[to] = num;
    }
    int RoadsExist(){
        q.push(s);
        memset(dis, 127, sizeof dis);
        dis[s] = 0; Flow[s] = INF; pre[t] = 0;
        while(!q.empty()){
    		now = q.front(); q.pop(); vis[now] = 0;
    		for(int i = head[now]; i; i = e[i].next)
    			if(e[i].rest && dis[e[i].to] > dis[now] + e[i].cost){
    				dis[e[i].to] = dis[now] + e[i].cost;
    				pre[e[i].to] = i;
    				Flow[e[i].to] = min(Flow[now], e[i].rest);
    				if(!vis[e[i].to]){
    					vis[e[i].to] = 1;
    					q.push(e[i].to);
    				}
    			}
        }
        return pre[t];
    }
    int a[MAXN], buy, qw, qc, sw, sc;
    int main(){
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i)
           scanf("%d", &a[i]);
        scanf("%d%d%d%d%d", &buy, &qw, &qc, &sw, &sc);
        s = (n << 1) + 1; t = s + 1;
        for(int i = 1; i <= n; ++i){
    		Add(s, i << 1, a[i], 0);
    		Add((i << 1) - 1, t, a[i], 0);
    		Add(s, (i << 1) - 1, INF, buy);
    		if(i != n) Add(i << 1, (i + 1) << 1, INF, 0);
    		if(i + qw <= n) Add(i << 1, ((i + qw) << 1) - 1, INF, qc);
    		if(i + sw <= n) Add(i << 1, ((i + sw) << 1) - 1, INF, sc);
        }
        while(RoadsExist()){
    		mincost += Flow[t] * dis[t];
    		for(int i = t; i != s; i = e[pre[i]].from){
    			e[pre[i]].rest -= Flow[t];
    			e[pre[i] ^ 1].rest += Flow[t];
    		}
        }
        printf("%lld
    ", mincost);
        return 0;
    }
    
    
  • 相关阅读:
    最好的委托与事件详解一(转自张子阳博客)
    事务处理两种方式(转自一壶茶水)
    条目列表点击效果
    html可变大小字体
    udp群聊
    vbs隐藏运行bat之木马合体
    淘宝客网站的链接跳转形式
    工作之外八小时,用辛苦换幸福
    怕吃苦,吃苦一辈子
    外链建设的六个方法
  • 原文地址:https://www.cnblogs.com/Qihoo360/p/9735600.html
Copyright © 2020-2023  润新知