题目链接
这个题推导公式跟(Catalan)数是一样的,可得解为(C_{n+m}^n-C_{n+m}^{n+1})
然后套组合数公式(C_n^m=frac{n!}{m!(n-m)!})
用阶乘分解的方法对分子和分母分解质因数然后指数相减,最后把剩下的高精度乘起来就行了,这样就避免了高精除法。可以用快速幂,但我太lan了,就直接暴力乘起来了。
说一下怎么阶乘分解,直接对每个数分解质因数的时间复杂度是(O(nsqrt{n})),这显然是不可忍受的。
于是,考虑先用线筛求出(1~n)之间所有质数,然后枚举所有质数(p),(1~n)中所有(p)的倍数包含一个质因子(p),所有(p^2)的倍数包含一个质因子(p),...
所以,(n!)中(p)的指数为(sum_{i=1}^{leftlfloor log_p n
ight
floor}leftlfloor n/p^i
ight
floor)
枚举(p)求就行了,时间复杂度(O(n log n))。
Code:
#include <cstdio>
#include <cstring>
const int MAXN = 10010;
int prime[MAXN], v[MAXN], c[MAXN], d[MAXN];
int n, cnt, m;
const int MOD = 10000;
struct Int{
int s[MAXN];
Int(int x){ memset(s, 0, sizeof s); s[++s[0]] = x % 10, x /= 10; }
void mul(int x){
s[1] *= x;
for(int i = 2; i <= s[0]; ++i){
s[i] = s[i] * x + s[i - 1] / MOD;
s[i - 1] %= MOD;
}
while(s[s[0]] >= MOD){
s[++s[0]] = s[s[0] - 1] / MOD;
s[s[0] - 1] %= MOD;
}
}
void cut(Int x){
for(int i = 1; i <= x.s[0]; ++i)
s[i] -= x.s[i];
for(int i = 1; i <= x.s[0]; ++i){
if(s[i] < 0){
s[i] += MOD;
--s[i + 1];
}
}
if(!s[s[0]]) --s[0];
}
void print(){
printf("%d", s[s[0]]);
for(int i = s[0] - 1; i; --i)
printf("%04d", s[i]);
}
}a(1), b(1);
int main(){
scanf("%d%d", &n, &m);
for(int i = 2; i <= n + m; ++i){
if(!v[i]){
v[i] = i;
prime[++cnt] = i;
}
for(int j = 1; j <= cnt; ++j){
if(prime[j] > v[i] || prime[j] * i > n + m) break;
v[prime[j] * i] = prime[j];
}
}
for(int i = 1; i <= cnt; ++i)
for(int j = prime[i]; j <= n + m; j *= prime[i])
c[i] += (n + m) / j;
for(int i = 1; i <= cnt && prime[i] <= n; ++i)
for(int j = prime[i]; j <= n; j *= prime[i])
c[i] -= n / j;
for(int i = 1; i <= cnt && prime[i] <= m; ++i)
for(int j = prime[i]; j <= m; j *= prime[i])
c[i] -= m / j;
for(int i = 1; i <= cnt; ++i)
for(int j = 1; j <= c[i]; ++j)
a.mul(prime[i]);
for(int i = 1; i <= cnt; ++i)
for(int j = prime[i]; j <= n + m; j *= prime[i])
d[i] += (n + m) / j;
for(int i = 1; i <= cnt && prime[i] <= n + 1; ++i)
for(int j = prime[i]; j <= n + 1; j *= prime[i])
d[i] -= (n + 1) / j;
for(int i = 1; i <= cnt && prime[i] <= m - 1; ++i)
for(int j = prime[i]; j <= m - 1; j *= prime[i])
d[i] -= (m - 1) / j;
for(int i = 1; i <= cnt; ++i)
for(int j = 1; j <= d[i]; ++j)
b.mul(prime[i]);
a.cut(b);
a.print();
return 0;
}