问题 B: 单
时间限制: 2 Sec 内存限制: 512 MB
题目描述
单车联通大街小巷.这就是出题人没有写题目背景的原因.
对于一棵树,认为每条边长度为1,每个点有一个权值a[i].dis(u,v)为点u到v的最短路径的边数.dis(u,u)=0.对每个点求出一个重要程度.点x的重要程度b[x]定义为其他点到这个点的距离乘上对应的点权再求和. 即:b[x]=a[1]*dis(1,x)+a[2]*dis(2,x)+….+a[n]*dis(n,x)
现在有很多树和对应的a数组,并求出了b数组.不幸的是,记录变得模糊不清了.幸运的是,树的形态完好地保存了下来,a数组和b数组至少有一个是完好无损的,但另一个数组完全看不清了.
希望你求出受损的数组.多组数据.
输入
第一行输入一个T,表示数据组数。接下来T组数据。
每组数据的第1行1个整数n表示树的点数.节点从1到n编号.
接下来n-1行每行两个整数u,v表示u和v之间有一条边.
接下来一行一个整数t,表示接下来数组的类型。
t=0则下一行是a数组,t=1则下一行是b数组。
接下来一行n个整数,表示保存完好的那个数组,第i个数表示a[i]或b[i]。
输出
T行,每组数据输出一行表示对应的a数组或b数组,数组的相邻元素用一个空格隔开。忽略行末空格和行尾回车.
样例输入
2
2
1 2
1
17 31
2
1 2
0
31 17
样例输出
31 17
17 31
提示
对于100%的数据,T=5, 2<=n<=100000,1<=u,v<=n,保证给出的n-1条边形成一棵树
对于100%的数据,t=0或t=1,1<=a[i]<=100,1<=b[i]<=10^9,t=1时保证给出的b数组对应唯一的一个a数组。
对于100%的数据,单个输入文件不会包含超过2000000个整数,这段话可以理解为,你不必考虑输入输出对程序运行时间的影响。
对于100%的数据,保证答案不会超过int能表示的范围
共有两问,
第一问:
两遍深搜完美解决问题。第一遍求出自己子树之和(设为sum(i)),第二遍就要求b数组。
b[i]=b[f[i]]-sum[i]+(tot-sum[i]);这个挺好证的,略。
第二问:
设自己子树之a[i]和sum[i].tot=Σa[i];
b[i]-b[fa[i]]=(tot-sum[i])-sim[i]=tot-sum[i]*2;
b[root]=Σsum[i];
Σ(b[i]-b[fa[i]])(i!=root)+2*b[root]=tot*(n-1);
从root向下推即可推出所有a[i].