• 重链剖分的总结与模板


    重链剖分的总结与模板

    概述:

    我们通常说的树链剖分指的是重链剖分。此外还有长链剖分,实链剖分。在学LCT时感觉需要对重剖来个总结。于是有了这一篇。一句话的概括。重链剖分是一种对树上结点进行编号。然后把链哈希成区间的一种方式。然后就可以把树上信息变成若干区间信息,通过线段树等数据结构进行高效的维护。如果你想学习树剖,网络上有很多资源。然后完成下面例题的点权和边权的维护,重链剖分就算入门了。
    

    点权:

    推荐例题HDU 3966 & FJUT OJ 2710 Aragorn's Story

    ///树剖 点权
    
    #include <bits/stdc++.h>
    
    using namespace std;
    const int MAXN = 50010;
    typedef long long LL;
    
    struct Edge {
        int to, w, next;
    } edge[MAXN * 2];
    
    int first[MAXN], sign, tot;
    
    int dep[MAXN], siz[MAXN], faz[MAXN], id[MAXN], son[MAXN], top[MAXN], tid[MAXN];
    
    int n, m, q;
    
    long long a[MAXN];
    
    struct SegmentTree {
    
        struct Node {
            int l, r;
            LL sum, Lazy;
        } tree[MAXN * 4];
    
        inline void push_up(int rt) {
            tree[rt].sum = tree[rt << 1].sum + tree[rt << 1 | 1].sum;
        }
    
        inline void push_down(int rt) {
            if(tree[rt].Lazy) {
                tree[rt << 1].Lazy += tree[rt].Lazy;
                tree[rt << 1 | 1].Lazy += tree[rt].Lazy;
                tree[rt << 1].sum += (tree[rt << 1].r - tree[rt << 1].l + 1) * tree[rt].Lazy;
                tree[rt << 1 | 1].sum += (tree[rt << 1 | 1].r - tree[rt << 1 | 1].l + 1) * tree[rt].Lazy;
                tree[rt].Lazy = 0;
            }
        }
    
        void build(int rt, int l, int r) {
            tree[rt].l = l;
            tree[rt].r = r;
            tree[rt].sum = 0;
            tree[rt].Lazy = 0;
            if(l == r) {
                tree[rt].sum = a[ tid[l] ];
                return ;
            }
            int mid = (l + r) >> 1;
            build(rt << 1, l, mid);
            build(rt << 1 | 1, mid + 1, r);
            push_up(rt);
        }
    
        void update(int rt, int l, int r, LL val) {
            if(l <= tree[rt].l && tree[rt].r <= r) {
                tree[rt].sum += (tree[rt].r - tree[rt].l + 1) * val;
                tree[rt].Lazy += val;
                return ;
            }
            push_down(rt);
            int mid = (tree[rt].l + tree[rt].r) >> 1;
            if(r <= mid) {
                update(rt << 1, l, r, val);
            } else if(l > mid) {
                update(rt << 1 | 1, l, r, val);
            } else {
                update(rt << 1, l, mid, val);
                update(rt << 1 | 1, mid + 1, r, val);
            }
            push_up(rt);
        }
    
        LL query(int rt, int l, int r) {
            if(l <= tree[rt].l && tree[rt].r <= r) {
                return tree[rt].sum;
            }
            push_down(rt);
            int mid = (tree[rt].l + tree[rt].r) >> 1;
            if(r <= mid) {
                return query(rt << 1, l, r);
            } else if(l > mid) {
                return query(rt << 1 | 1, l, r);
            } else {
                return query(rt << 1, l, mid) + query(rt << 1 | 1, mid + 1, r);
            }
        }
    
    } Seg;
    
    
    void init() {
        sign = tot = 0;
        memset(first, -1, sizeof(first));
        memset(dep, 0, sizeof(dep));
        memset(siz, 0, sizeof(siz));
        memset(faz, 0, sizeof(faz));
        memset(id, 0, sizeof(id));
        memset(son, 0, sizeof(son));
        memset(top, 0, sizeof(top));
    }
    
    void add_edge(int u, int v, int w) {
        edge[sign].to = v;
        edge[sign].w = w;
        edge[sign].next = first[u];
        first[u] = sign++;
    }
    
    void dfs1(int now, int father, int depth) {
        siz[now] = 1;
        faz[now] = father;
        dep[now] = depth;
        son[now] = 0;
        for(int i = first[now]; ~i; i = edge[i].next) {
            int to = edge[i].to;
            if(to != father) {
                dfs1(to, now, depth + 1);
                siz[now] += siz[to];
                if(son[now] == 0 || siz[ son[now] ] < siz[to]) {
                    son[now] = to;
                }
            }
        }
    }
    
    void dfs2(int now, int topf) {
        top[now] = topf;
        id[now] = ++tot;
        tid[id[now]] = now;
        if(son[now]) {
            dfs2(son[now], topf);
        }
        for(int i = first[now]; ~i; i = edge[i].next) {
            int to = edge[i].to;
            if(to == faz[now] || to == son[now]) {
                continue;
            }
            dfs2(to, to);
        }
    }
    
    void cutting(int u, int v, int val) {
        int fu = top[u], fv = top[v];
        while(fu != fv) {
            if(dep[fu] < dep[fv]) {
                swap(fu, fv);
                swap(u, v);
            }
            Seg.update(1, id[fu], id[u], val);
            u = faz[fu];
            fu = top[u];
        }
        if(dep[u] > dep[v]) {
            swap(u,v);
        }
        Seg.update(1, id[u], id[v], val);
    }
    
    long long query(int u, int v) {
        long long sum = 0;
        int fu = top[u], fv = top[v];
        while(fu != fv) {
            if(dep[fu] < dep[fv]) {
                swap(fu, fv);
                swap(u, v);
            }
            sum = sum + Seg.query(1, id[fu], id[u]);
            u = faz[fu];
            fu = top[u];
        }
        if(dep[u] > dep[v]) {
            swap(u, v);
        }
        return sum = sum + Seg.query(1, id[u], id[v]);
    }
    
    int main() {
        while(~scanf("%d %d %d", &n, &m, &q)) {
            init();
            for(int i = 1; i <= n; i++ ) {
                scanf("%d", &a[i]);
            }
            for(int i = 1; i <= m; i++ ) {
                int u, v;
                scanf("%d %d", &u, &v);
                add_edge(u, v, 1);
                add_edge(v, u, 1);
            }
            tot = 0;
            dfs1(1, 0, 0);
            dfs2(1, 1);
            Seg.build(1, 1, n);
            char opt[5];
            int x, y,z;
            for(int i = 1; i <= q; i++ ) {
                scanf("%s", opt);
                if(opt[0] == 'I') {
                    scanf("%d %d %d", &x, &y, &z);
                    cutting(x, y, z);
                    continue;
                }
                if(opt[0] == 'D') {
                    scanf("%d %d %d", &x, &y, &z);
                    cutting(x, y, -z);
                    continue;
                }
                if(opt[0] == 'Q') {
                    scanf("%d", &x);
                    printf("%I64d
    ", query(x, x));
                    continue;
                }
            }
        }
        return 0;
    }
    

    边权

    推荐例题POJ2763 & FJUT OJ 2796 Housewife Wind

    维护边权,只要把边权存到深度更深的结点即可。

    这么长代码还好没写出bug。不然真不好办。。。

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    
    using namespace std;
    const int maxn = 1e5 + 7;
    const int INF = 0x7FFFFFF;
    
    int dep[maxn], siz[maxn], faz[maxn], id[maxn], son[maxn], val[maxn], top[maxn];
    
    struct Edge {
        int to, w, next;
    } edge[maxn * 2];
    
    int first[maxn], sign, n, m, s, tot;
    
    struct Node {
        int from, to, cost;
    } input[maxn];
    
    struct TreeNode {
        int l, r, mx, mi, lazy;
    } tree[maxn << 2];
    
    inline void init() {
        memset(first, -1, sizeof(first));
        sign = 0;
    }
    
    inline void add_edge(int u, int v, int w) {
        edge[sign].to = v;
        edge[sign].w = w;
        edge[sign].next = first[u];
        first[u] = sign ++;
    }
    
    void dfs1(int now, int father, int depth) {
        siz[now] = 1;
        faz[now] = father;
        dep[now] = depth;
        son[now] = 0;
        for(int i = first[now]; ~i; i = edge[i].next) {
            int to = edge[i].to;
            if(to != father) {
                dfs1(to, now, depth + 1);
                siz[now] += siz[to];
                if(siz[ son[now] ] < siz[to]) {
                    son[now] = to;
                }
            }
        }
    }
    
    void dfs2(int now, int topf) {
        top[now] = topf;
        id[now] = ++tot;
        if(son[now]) {
            dfs2(son[now], topf);
        }
        for(int i = first[now]; ~i; i = edge[i].next) {
            int to = edge[i].to;
            if(to == faz[now] || to == son[now]) {
                continue;
            }
            dfs2(to, to);
        }
    }
    
    void push_up(int rt) {
        tree[rt].mx = max(tree[rt << 1].mx, tree[rt << 1 | 1].mx);
        tree[rt].mi = min(tree[rt << 1].mi, tree[rt << 1 | 1].mi);
    }
    
    void push_down(int rt) {
        if(tree[rt].lazy) {
            tree[rt].lazy ^= 1;
            tree[rt << 1].lazy ^= 1;
            tree[rt << 1 | 1].lazy ^= 1;
            swap(tree[rt << 1].mx, tree[rt << 1].mi);
            tree[rt << 1].mx *= -1;
            tree[rt << 1].mi *= -1;
            swap(tree[rt << 1 | 1].mx, tree[rt << 1 | 1].mi);
            tree[rt << 1 | 1].mx *= -1;
            tree[rt << 1 | 1].mi *= -1;
        }
    }
    
    void build(int rt, int l, int r) {
        tree[rt].l = l, tree[rt].r = r;
        tree[rt].lazy = 0;
        if(l == r) {
            tree[rt].mx = tree[rt].mi = val[l];
            return ;
        }
        int mid = (l + r) >> 1;
        build(rt << 1, l, mid);
        build(rt << 1 | 1, mid + 1, r);
        push_up(rt);
    }
    
    void update(int rt, int l, int r) { ///区间取反
        if(l <= tree[rt].l && tree[rt].r <= r) {
            tree[rt].lazy ^= 1;
            swap(tree[rt].mx, tree[rt].mi);
            tree[rt].mx *= -1;
            tree[rt].mi *= -1;
            return ;
        }
        push_down(rt);
        int mid = (tree[rt].l + tree[rt].r) >> 1;
        if(r <= mid) {
            update(rt << 1, l, r);
        } else if(l > mid) {
            update(rt << 1 | 1, l, r);
        } else {
            update(rt << 1, l, mid);
            update(rt << 1 | 1, mid + 1, r);
        }
        push_up(rt);
    }
    
    void updatePos(int rt, int pos, int val) { ///单点修改
        if(tree[rt].l == tree[rt].r) {
            tree[rt].mx = tree[rt].mi = val;
            return ;
        }
        push_down(rt);
        int mid = (tree[rt].l + tree[rt].r) >> 1;
        if(pos <= mid) {
            updatePos(rt << 1, pos, val);
        } else {
            updatePos(rt << 1 | 1, pos, val);
        }
        push_up(rt);
    }
    
    int query(int rt, int l, int r) {
        if(l <= tree[rt].l && tree[rt].r <= r) {
            return tree[rt].mx;
        }
        push_down(rt);
        int mid = (tree[rt].l + tree[rt].r) >> 1;
        if(r <= mid) {
            return query(rt << 1, l, r);
        } else if(l > mid) {
            return query(rt << 1 | 1, l, r);
        } else {
            return max(query(rt << 1, l, mid), query(rt << 1 | 1, mid + 1, r));
        }
    }
    
    void treeUpdate(int x, int y) {
        while(top[x] != top[y]) {
            if(dep[top[x]] < dep[top[y]]) {
                swap(x,y);
            }
            update(1, id[top[x]], id[x]);
            x = faz[top[x]];
        }
        if(dep[x] > dep[y]) {
            swap(x,y);
        }
        if(x != y) {
            update(1, id[son[x]], id[y]);
        }
    }
    
    int treeQuery(int x, int y) {
        int ans = -INF;
        while(top[x] != top[y]) {
            if(dep[top[x]] < dep[top[y]]) {
                swap(x,y);
            }
            ans = max(ans, query(1, id[top[x]], id[x]));
            x = faz[top[x]];
        }
        if(dep[x] > dep[y]) {
            swap(x,y);
        }
        if(x != y) {
            ans = max(ans, query(1, id[son[x]], id[y]));
        }
        return ans;
    }
    
    int cutting(int x, int y) {
        int sum = 0;
        while(top[x] != top[y]) {
            if(dep[top[x]] < dep[top[y]]) {
                swap(x,y);
            }
            sum += query(1, id[top[x]], id[x]);
            x = faz[top[x]];
        }
        if(dep[x] > dep[y]) {
            swap(x,y);
        }
        if(x != y) {
            sum += query(1, id[son[x]], id[y]);
        }
        return sum;
    }
    
    int main() {
        int T, x, y;
        char opt[10];
        scanf("%d", &T);
        while(T--) {
            scanf("%d", &n);
            init();
            for(int i = 1; i <= n - 1; i++ ) {
                scanf("%d %d %d", &input[i].from, &input[i].to, &input[i].cost);
                add_edge(input[i].from, input[i].to, input[i].cost);
                add_edge(input[i].to, input[i].from, input[i].cost);
            }
            tot = 0;
            dfs1(1, 0, 1);
            dfs2(1, 1);
            for(int i = 1; i <= n - 1; i++ ) {
                if(dep[ input[i].from ] < dep[ input[i].to ]) {
                    swap(input[i].from, input[i].to);
                }
                val[ id[ input[i].from ] ] = input[i].cost;
            }
            build(1, 1, n);
            while(~scanf("%s", opt) && strcmp(opt, "DONE")) {
                if(opt[0] == 'C') {
                    scanf("%d %d", &x, &y);
                    if(dep[ input[x].from ] < dep[ input[x].to ]) {
                        swap(input[x].from, input[x].to);
                    }
                    updatePos(1, id[ input[x].from ], y);
                }
                if(opt[0] == 'N') {
                    scanf("%d %d", &x, &y);
                    treeUpdate(x, y);
                }
                if(opt[0] == 'Q') {
                    scanf("%d %d", &x, &y);
                    printf("%d
    ", treeQuery(x, y));
                }
            }
        }
        return 0;
    }
    
  • 相关阅读:
    delete、truncate、drop的区别
    Java闭包
    visio 画网格图
    GPU服务器中了木马病毒
    visio 同时标注上下标
    自动缩放字体
    latex 图片
    多GPU训练
    texstudio 外部查看器错误
    Linux lsof命令详解
  • 原文地址:https://www.cnblogs.com/Q1143316492/p/9555241.html
Copyright © 2020-2023  润新知