文章转载自微信公众号:机器学习炼丹术。欢迎大家关注,这是我的学习分享公众号,100+原创干货。
文章目录:
本文是对一些函数的学习。函数主要包括下面四个方便:
- 模型构建的函数:
add_module
,add_module
,add_module
- 访问子模块:
add_module
,add_module
,add_module
,add_module
- 网络遍历:
add_module
,add_module
- 模型的保存与加载:
add_module
,add_module
,add_module
1 模型构建函数
torch.nn.Module
是所有网络的基类,在PyTorch实现模型的类中都要继承这个类(这个在之前的课程中已经提到)。在构建Module中,Module是一个包含其他的Module的,类似于,你可以先定义一个小的网络模块,然后把这个小模块作为另外一个网络的组件。因此网络结构是呈现树状结构。
我们先简单定义一个网络:
import torch.nn as nn
import torch
class MyNet(nn.Module):
def __init__(self):
super(MyNet,self).__init__()
self.conv1 = nn.Conv2d(3,64,3)
self.conv2 = nn.Conv2d(64,64,3)
def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
return x
net = MyNet()
print(net)
输出结果:
MyNet
中有两个属性conv1
和conv2
是两个卷积层,在正向传播forward
的过程中,依次调用这两个卷积层实现网络的功能。
1.1 add_module
这种是最常见的定义网络的功能,在有些项目中,会看到这样的方法add_module
。我们用这个方法来重写上面的网络:
class MyNet(nn.Module):
def __init__(self):
super(MyNet,self).__init__()
self.add_module('conv1',nn.Conv2d(3,64,3))
self.add_module('conv2',nn.Conv2d(64,64,3))
def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
return x
其实add_module(name,layer)
和self.name=layer
实现了相同的功能,个人感觉也许是因为add_module可以使用字符串来定义变量名字,所以可以放在循环中?反正这个先了解熟悉熟悉。
上面的两种方法都是一层一层的添加layer,如果网络复杂的话,那就需要写很多重复的代码了。因此接下来来讲解一下网络模块的构建,torch.nn.ModuleList
和torch.nn.Sequential
1.2 ModuleList
ModuleList
按照字面意思是用list
的形式保存网络层的。这样就可以先将网络需要的layer构建好,保存到一个list,然后通过ModuleList
方法添加到网络中.
class MyNet(nn.Module):
def __init__(self):
super(MyNet,self).__init__()
self.linears = nn.ModuleList(
[nn.Linear(10,10) for i in range(5)]
)
def forward(self,x):
for l in self.linears:
x = l(x)
return x
net = MyNet()
print(net)
输出结果是:
这个ModuleList主要是用在读取config文件来构建网络模型中的,下面用VGG模型的构建为例子:
vgg_cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
512, 512, 512, 'M']
def vgg(cfg, i, batch_norm=False):
layers = []
in_channels = i
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
elif v == 'C':
layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return layers
class Model1(nn.Module):
def __init__(self):
super(Model1,self).__init__()
self.vgg = nn.ModuleList(vgg(vgg_cfg,3))
def forward(self,x):
for l in self.vgg:
x = l(x)
m1 = Model1()
print(m1)
先读取网络结构的配置文件vgg_cfg
然后根据这个文件创建对应的Layer list,然后使用ModuleList
添加到网络中,这样可以快速创建不同的网络(用上面为例子的话,可以通过修改配置文件,然后快速修改网络结构 )
1.3 Sequential
在一些自己做的小项目中,Sequential
其实用的更为频繁。
依然重写最初最简单的例子:
class MyNet(nn.Module):
def __init__(self):
super(MyNet,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3,64,3),
nn.Conv2d(64,64,3)
)
def forward(self,x):
x = self.conv(x)
return x
net = MyNet()
print(net)
运行结果:
观察细致的朋友可以发现这个问题,Seqential内的网络层是默认用数字进行标号的,而一开始我们使用self.conv1
和self.conv2
的时候,使用conv1和conv2作为标号的。
我们如何修改Sequential
中网络层的名称呢?这里需要使用到collections.OrderedDict
有序字典。Sequential
是支持有序字典构建的。
from collections import OrderedDict
class MyNet(nn.Module):
def __init__(self):
super(MyNet,self).__init__()
self.conv = nn.Sequential(OrderedDict([
('conv1',nn.Conv2d(3,64,3)),
('conv2',nn.Conv2d(64,64,3))
]))
def forward(self,x):
x = self.conv(x)
return x
net = MyNet()
print(net)
输出结果:
1.4 小总结
- 单独增加一个网络层或者子模块,可以用
add_module
或者直接赋予属性; ModuleList
可以将一个Module的List增加到网络中,自由度较高。Sequential
按照顺序产生一个Module模块。这里推荐习惯使用OrderedDict的方法进行构建。对网络层加上规范的名称,这样有助于后续查找与遍历
2 遍历模型结构
本章节使用下面的方法进行遍历之前提到的Module
。(个人理解,Module是多个layer的合并,但是一个layer可以说成Module。 )
先定义一个网络吧,随便写一个:
import torch.nn as nn
import torch
from collections import OrderedDict
class MyNet(nn.Module):
def __init__(self):
super(MyNet,self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=3)
self.conv2 = nn.Conv2d(64,64,3)
self.maxpool1 = nn.MaxPool2d(2,2)
self.features = nn.Sequential(OrderedDict([
('conv3', nn.Conv2d(64,128,3)),
('conv4', nn.Conv2d(128,128,3)),
('relu1', nn.ReLU())
]))
def forward(self,x):
x = self.conv1(x)
x = self.conv2(x)
x = self.maxpool1(x)
x = self.features(x)
return x
net = MyNet()
print(net)
输出结果是:
2.1 modules()
在第四课中初始化模型各个层的参数的时候,用到了这个方法,现在我们再来理解一下:
for idx,m in enumerate(net.modules()):
print(idx,"-",m)
运行结果:
上面那个网络构建的时候用到了Sequential
,所以网络中其实是嵌套了一个小的Module,这就是之前提到的树状结构,然后上面便利的时候也是树状结构的便利过程,可以看出来应该是一个深度遍历的过程。
- 首先第一个输出的是最大的那个Module,也就是整个网络,
0-Model
整个网络模块; 1-2-3-4
是网络的四个子模块,4-Sequential
中间仍然包含子模块5-6-7
是模块4-Sequential
的子模块。
【总结】
modules()
是递归的返回网络的各个module(深度遍历),从最顶层直到最后的叶子的module。
2.2 named_modules()
named_modules()
和module()
类似,只是同时返回name和module。
for idx,(name,m) in enumerate(net.named_modules()):
print(idx,"-",name)
输出结果:
2.3 parameters()
for p in net.parameters():
print(type(p.data),p.size())
运行结果:
输出的是四个卷积层的权重矩阵参数和偏置参数。值得一提的是,对网络进行训练时需要将parameters()作为优化器optimizer的参数。
optimizer = torch.optim.SGD(net.parameters(),
lr = 0.001,
momentum=0.9)
总之呢,这个parameters()
是返回网络所有的参数,主要用在给optimizer优化器用的。而要对网络的某一层的参数做处理的时候,一般还是使用named_parameters()方便一些。
for idx,(name,m) in enumerate(net.named_parameters()):
print(idx,"-",name,m.size())
输出结果:
【小扩展】
我个人有时会使用下面的方法来获取参数:
for idx,(name,m) in enumerate(net.named_modules()):
if isinstance(m,nn.Conv2d):
print(m.weight.shape)
print(m.bias.shape)
先判断是否是卷积层,然后获取其参数,输出结果:
3 保存与载入
PyTorch使用torch.save
和torch.load
方法来保存和加载网络,而且网络结构和参数可以分开的保存和加载。
torch.save(model,'model.pth') # 保存
model = torch.load("model.pth") # 加载
pytorch中网络结构和模型参数是可以分开保存的。上面的方法是两者同时保存到了.pth文件中,当然,你也可以仅仅保存网络的参数来减小存储文件的大小。注意:如果你仅仅保存模型参数,那么在载入的时候,是需要通过运行代码来初始化模型的结构的。
torch.save(model.state_dict(),"model.pth") # 保存参数
model = MyNet() # 代码中创建网络结构
params = torch.load("model.pth") # 加载参数
model.load_state_dict(params) # 应用到网络结构中
至此,我们今天已经学习了不少的内容,大家对PyTorch的掌握更近一步了呢~