• 数据结构开发(21):树中属性操作与层次遍历


    0.目录

    1.树中属性操作的实现

    2.树形结构的层次遍历

    3.小结

    1.树中属性操作的实现

    树中结点的数目:

    • 定义功能:count(node)
      1. node 为根结点的树中统计结点数目

    树结点数目的计算示例:

    • count(A) = count(B) + count(C) + count(D) + 1

    在GTree.h中实现统计结点数目:

    protected:
        int count(GTreeNode<T>* node) const
        {
            int ret = 0;
    
            if( node != NULL )
            {
                ret = 1;
    
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    ret += count(node->child.current());
                }
            }
    
            return ret;
        }
    public:
        int count() const
        {
            return count(root());
        }
    

    树的高度:

    • 定义功能:height(node)
      1. 获取 node 为根结点的树的高度

    树的高度计算示例:

    • height(A) = MAX{ height(B), height(C), height(D) } + 1

    在GTree.h中实现获取树的高度:

    protected:
        int height(GTreeNode<T>* node) const
        {
            int ret = 0;
    
            if( node != NULL )
            {
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    int h = height(node->child.current());
    
                    if( ret < h )
                    {
                        ret = h;
                    }
                }
    
                ret = ret + 1;
            }
    
            return ret;
        }
    public:
        int height() const
        {
            return height(root());
        }
    

    树的度数:

    • 定义功能:degree(node)
      1. 获取 node 为根结点的树的度数

    树的度计算示例:

    • degree(A) = MAX{ degree(B), degree(C), degree(D), 3 }

    在GTree.h中实现获取树的度数:

    protected:
        int degree(GTreeNode<T>* node) const
        {
            int ret = 0;
    
            if( node != NULL )
            {
                ret = node->child.length();
    
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    int d = degree(node->child.current());
    
                    if( ret < d )
                    {
                        ret = d;
                    }
                }
            }
    
            return ret;
        }
    public:
        int degree() const
        {
            return degree(root());
        }
    

    统一mian.cpp测试:

    #include <iostream>
    #include "GTree.h"
    
    using namespace std;
    using namespace StLib;
    
    int main()
    {
        GTree<char> t;
        GTreeNode<char>* node = NULL;
        GTreeNode<char> root;
    
        root.value = 'A';
        root.parent = NULL;
    
        t.insert(&root);
    
        node = t.find('A');
        t.insert('B', node);
        t.insert('C', node);
        t.insert('D', node);
    
        node = t.find('B');
        t.insert('E', node);
        t.insert('F', node);
    
        node = t.find('E');
        t.insert('K', node);
        t.insert('L', node);
    
        node = t.find('C');
        t.insert('G', node);
    
        node = t.find('D');
        t.insert('H', node);
        t.insert('I', node);
        t.insert('J', node);
    
        node = t.find('H');
        t.insert('M', node);
    
        cout << t.count() << endl;
        cout << t.height() << endl;
        cout << t.degree() << endl;
    
        return 0;
    }
    

    运行结果为:

    13
    4
    3
    

    2.树形结构的层次遍历

    问题:

    • 如何按层次遍历通用树结构中的每一个数据元素?

    当前的事实

    • 树是非线性的数据结构,树的结点没有固定的编号方式

    新的需求

    • 为通用树结构提供新的方法,快速遍历每一个结点

    设计思路(游标):

    • 在树中定义一个游标 ( GTreeNode* )
    • 遍历开始前将游标指向根结点 ( root() )
    • 获取游标指向的数据元素
    • 通过结点中的 child 成员移动游标

    提供一组遍历相关的函数,按层次访问树中的数据元素。

    层次遍历算法:

    • 原料:class LinkQueue<T>;
    • 游标:LinkQueue<T>: :front();
    • 思想:
      1. begin() → 将根结点压入队列中
      2. current() → 访问队头元素指向的数据元素
      3. next() → 队头元素弹出,将队头元素的孩子压入队列中 ( 核心 )
      4. end() → 判断队列是否为空

    层次遍历算法示例:

    在GTree.h中实现树形结构的层次遍历:

    protected:
        LinkQueue<GTreeNode<T>*> m_queue;
    public:
        bool begin()
        {
            bool ret = (root() != NULL);
    
            if( ret )
            {
                m_queue.clear();
                m_queue.add(root());
            }
    
            return ret;
        }
    
        bool end()
        {
            return (m_queue.length() == 0);
        }
    
        bool next()
        {
            bool ret = (m_queue.length() > 0);
    
            if( ret )
            {
                GTreeNode<T>* node = m_queue.front();
    
                m_queue.remove();
    
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    m_queue.add(node->child.current());
                }
            }
    
            return ret;
        }
    
        T current()
        {
            if( !end() )
            {
                return m_queue.front()->value;
            }
            else
            {
                THROW_EXCEPTION(InvalidOperationException, "No value at current position ...");
            }
        }
    

    然后在其他地方加入对应的清空队列的代码:

    public:
        SharedPointer< Tree<T> > remove(const T& value)
        {
            GTree<T>* ret = NULL;
            GTreeNode<T>* node = find(value);
    
            if( node == NULL )
            {
                THROW_EXCEPTION(InvalidParameterException, "Can not find the node via parameter value ...");
            }
            else
            {
                remove(node, ret);
    
                m_queue.clear();
            }
    
            return ret;
        }
    
        SharedPointer< Tree<T> > remove(TreeNode<T>* node)
        {
            GTree<T>* ret = NULL;
    
            node = find(node);
    
            if( node == NULL )
            {
                THROW_EXCEPTION(InvalidParameterException, "Parameter node is invalid ...");
            }
            else
            {
                remove(dynamic_cast<GTreeNode<T>*>(node), ret);
    
                m_queue.clear();
            }
    
            return ret;
        }
    

    最后把GTree和GTreeNode类的拷贝构造和赋值操作都声明为保护成员函数:
    GTree.h

    protected:
        GTree(const GTree<T>&);
        GTree<T>& operator = (const GTree<T>&);
    public:
        GTree()
        {
    
        }
    

    GTreeNode.h

    protected:
        GTreeNode(const GTreeNode<T>&);
        GTreeNode<T>& operator = (const GTreeNode<T>&);
    

    最终main.cpp测试

    #include <iostream>
    #include "GTree.h"
    
    using namespace std;
    using namespace StLib;
    
    int main()
    {
        GTree<char> t;
        GTreeNode<char>* node = NULL;
        GTreeNode<char> root;
    
        root.value = 'A';
        root.parent = NULL;
    
        t.insert(&root);
    
        node = t.find('A');
        t.insert('B', node);
        t.insert('C', node);
        t.insert('D', node);
    
        node = t.find('B');
        t.insert('E', node);
        t.insert('F', node);
    
        node = t.find('E');
        t.insert('K', node);
        t.insert('L', node);
    
        node = t.find('C');
        t.insert('G', node);
    
        node = t.find('D');
        t.insert('H', node);
        t.insert('I', node);
        t.insert('J', node);
    
        node = t.find('H');
        t.insert('M', node);
    
        for(t.begin(); !t.end(); t.next())
        {
            cout << t.current();
        }
        cout << endl;
    
        return 0;
    }
    

    运行结果为:

    ABCDEFGHIJKLM
    

    3.小结

    • 树的结点没有固定的编号方式
    • 可以按照层次关系对树中的结点进行遍历
    • 通过游标的思想设计遍历成员函数
    • 遍历成员函数是相互依赖,相互配合的关系
    • 遍历算法的核心为队列的使用

    最终的GTree.h代码:

    #ifndef GTREE_H
    #define GTREE_H
    
    #include "Tree.h"
    #include "GTreeNode.h"
    #include "Exception.h"
    #include "LinkQueue.h"
    
    namespace StLib
    {
    
    template <typename T>
    class GTree : public Tree<T>
    {
    protected:
        LinkQueue<GTreeNode<T>*> m_queue;
    
        GTree(const GTree<T>&);
        GTree<T>& operator = (const GTree<T>&);
    
        GTreeNode<T>* find(GTreeNode<T>* node, const T& value) const
        {
            GTreeNode<T>* ret = NULL;
    
            if( node != NULL )
            {
                if( node->value == value )
                {
                    return node;
                }
                else
                {
                    for(node->child.move(0); !node->child.end() && (ret == NULL); node->child.next())
                    {
                        ret = find(node->child.current(), value);
                    }
                }
            }
    
            return ret;
        }
    
        GTreeNode<T>* find(GTreeNode<T>* node, GTreeNode<T>* obj) const
        {
            GTreeNode<T>* ret = NULL;
    
            if( node == obj )
            {
                return node;
            }
            else
            {
                if( node != NULL )
                {
                    for(node->child.move(0); !node->child.end() && (ret == NULL); node->child.next())
                    {
                        ret = find(node->child.current(), obj);
                    }
                }
            }
    
            return ret;
        }
    
        void free(GTreeNode<T>* node)
        {
            if( node != NULL )
            {
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    free(node->child.current());
                }
    
                if( node->flag() )
                {
                    delete node;
                }
            }
        }
    
        void remove(GTreeNode<T>* node, GTree<T>*& ret)
        {
            ret = new GTree<T>();
    
            if( ret == NULL )
            {
                THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create new tree ...");
            }
            else
            {
                if( root() == node )
                {
                    this->m_root = NULL;
                }
                else
                {
                    LinkList<GTreeNode<T>*>& child = dynamic_cast<GTreeNode<T>*>(node->parent)->child;
    
                    child.remove(child.find(node));
    
                    node->parent = NULL;
                }
    
                ret->m_root = node;
            }
        }
    
        int count(GTreeNode<T>* node) const
        {
            int ret = 0;
    
            if( node != NULL )
            {
                ret = 1;
    
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    ret += count(node->child.current());
                }
            }
    
            return ret;
        }
    
        int height(GTreeNode<T>* node) const
        {
            int ret = 0;
    
            if( node != NULL )
            {
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    int h = height(node->child.current());
    
                    if( ret < h )
                    {
                        ret = h;
                    }
                }
    
                ret = ret + 1;
            }
    
            return ret;
        }
    
        int degree(GTreeNode<T>* node) const
        {
            int ret = 0;
    
            if( node != NULL )
            {
                ret = node->child.length();
    
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    int d = degree(node->child.current());
    
                    if( ret < d )
                    {
                        ret = d;
                    }
                }
            }
    
            return ret;
        }
    public:
        GTree()
        {
    
        }
    
        bool insert(TreeNode<T>* node)
        {
            bool ret = true;
    
            if( node != NULL )
            {
                if( this->m_root == NULL )
                {
                    node->parent = NULL;
                    this->m_root = node;
                }
                else
                {
                    GTreeNode<T>* np = find(node->parent);
    
                    if( np != NULL )
                    {
                        GTreeNode<T>* n = dynamic_cast<GTreeNode<T>*>(node);
    
                        if( np->child.find(n) < 0 )
                        {
                            np->child.insert(n);
                        }
                    }
                    else
                    {
                        THROW_EXCEPTION(InvalidOperationException, "Invalid parent tree node ...");
                    }
                }
            }
            else
            {
                THROW_EXCEPTION(InvalidParameterException, "Parameter node cannot be NULL ...");
            }
    
            return ret;
        }
    
        bool insert(const T& value, TreeNode<T>* parent)
        {
            bool ret = true;
            GTreeNode<T>* node = GTreeNode<T>::NewNode();
    
            if( node != NULL )
            {
                node->value = value;
                node->parent = parent;
    
                insert(node);
            }
            else
            {
                THROW_EXCEPTION(NoEnoughMemoryException, "No memory to create new tree node ...");
            }
    
            return ret;
        }
    
        SharedPointer< Tree<T> > remove(const T& value)
        {
            GTree<T>* ret = NULL;
            GTreeNode<T>* node = find(value);
    
            if( node == NULL )
            {
                THROW_EXCEPTION(InvalidParameterException, "Can not find the node via parameter value ...");
            }
            else
            {
                remove(node, ret);
    
                m_queue.clear();
            }
    
            return ret;
        }
    
        SharedPointer< Tree<T> > remove(TreeNode<T>* node)
        {
            GTree<T>* ret = NULL;
    
            node = find(node);
    
            if( node == NULL )
            {
                THROW_EXCEPTION(InvalidParameterException, "Parameter node is invalid ...");
            }
            else
            {
                remove(dynamic_cast<GTreeNode<T>*>(node), ret);
    
                m_queue.clear();
            }
    
            return ret;
        }
    
        GTreeNode<T>* find(const T& value) const
        {
            return find(root(), value);
        }
    
        GTreeNode<T>* find(TreeNode<T>* node) const
        {
            return find(root(), dynamic_cast<GTreeNode<T>*>(node));
        }
    
        GTreeNode<T>* root() const
        {
            return dynamic_cast<GTreeNode<T>*>(this->m_root);
        }
    
        int degree() const
        {
            return degree(root());
        }
    
        int count() const
        {
            return count(root());
        }
    
        int height() const
        {
            return height(root());
        }
    
        void clear()
        {
            free(root());
    
            this->m_root = NULL;
    
            m_queue.clear();
        }
    
        bool begin()
        {
            bool ret = (root() != NULL);
    
            if( ret )
            {
                m_queue.clear();
                m_queue.add(root());
            }
    
            return ret;
        }
    
        bool end()
        {
            return (m_queue.length() == 0);
        }
    
        bool next()
        {
            bool ret = (m_queue.length() > 0);
    
            if( ret )
            {
                GTreeNode<T>* node = m_queue.front();
    
                m_queue.remove();
    
                for(node->child.move(0); !node->child.end(); node->child.next())
                {
                    m_queue.add(node->child.current());
                }
            }
    
            return ret;
        }
    
        T current()
        {
            if( !end() )
            {
                return m_queue.front()->value;
            }
            else
            {
                THROW_EXCEPTION(InvalidOperationException, "No value at current position ...");
            }
        }
    
        ~GTree()
        {
            clear();
        }
    };
    
    }
    
    #endif // GTREE_H
    
  • 相关阅读:
    初识Java内存结构
    eclipse的安装与配置
    关于android客户端使用ksoap2调用wcf(.svc)的总结
    ie下jpg不显示问题
    Android学习笔记(1)
    HTML标签语义化
    【转】android模拟机不能上网
    WCF IIS 寄宿问题
    C# 参数传递
    Wcf IIS 寄宿
  • 原文地址:https://www.cnblogs.com/PyLearn/p/10159218.html
Copyright © 2020-2023  润新知