• [Luogu] P1438 无聊的数列 | 线段树简单题


    题目背景

    无聊的 YYB 总喜欢搞出一些正常人无法搞出的东西。有一天,无聊的 YYB 想出了一道无聊的题:无聊的数列。。。(K峰:这题不是傻X题吗)

    题目描述

    维护一个数列 a i a_i ai ,支持两种操作:

    1 l r K D:给出一个长度等于 r − l + 1 r-l+1 rl+1 的等差数列,首项为 K K K,公差为 D D D,并将它对应加到 [ l , r ] [l,r] [l,r] 范围中的每一个数上。即:令 a l = a l + K , a l + 1 = a l + 1 + K + D … a r = a r + K + ( r − l ) × D a_l=a_l+K,a_{l+1}=a_{l+1}+K+Dldots a_r=a_r+K+(r-l) imes D al=al+K,al+1=al+1+K+Dar=ar+K+(rl)×D
    2 p:询问序列的第 p p p 个数的值 a p a_p ap

    输入格式

    第一行两个整数数 n , m n,m n,m 表示数列长度和操作个数。
    第二行 n n n 个整数,第 i i i 个数表示 a i a_i ai
    接下来的 m m m 行,每行先输入一个整数 o p t opt opt
    o p t = 1 opt=1 opt=1 则再输入四个整数 l   r   K   D l r K D l r K D
    o p t = 2 opt=2 opt=2 则再输入一个整数 p p p

    输出格式

    对于每个询问,一行一个整数表示答案。

    输入输出样例

    输入

    5 2
    1 2 3 4 5
    1 2 4 1 2
    2 3
    

    输出

    6
    

    说明/提示

    数据规模与约定
    对于 100 % 100\% 100% 数据, 0 ≤ n , m ≤ 1 0 5 , − 200 ≤ a i , K , D ≤ 200 0le n,m le 10^5,-200le a_i,K,Dle 200 0n,m105,200ai,K,D200, 1 ≤ l ≤ r ≤ n , 1 ≤ p ≤ n 1 leq l leq r leq n, 1 leq p leq n 1lrn,1pn

    根据差分很容易就可以想到:
    在对区间 [ l , r ] [l,r] [l,r]加上一个首项为 K K K,公差为 D D D的等差数列之后,我们可以根据差分得到这样的式子:
    a [ l ] = a [ l ] + K a[l] = a[l] + K a[l]=a[l]+K
    a [ i ] = a [ i ] + D a[i] = a[i] + D a[i]=a[i]+D 其中 i ∈ [ l + 1 , r ] i in [l+1,r] i[l+1,r]
    a [ r + 1 ] = a [ r + 1 ] − K − ( r − ( l + 1 ) + 1 ) ∗ D a[r+1] = a[r+1] - K - (r - (l + 1) + 1) * D a[r+1]=a[r+1]K(r(l+1)+1)D 其中, R + 1 ≤ n R+1 leq n R+1n

    对于要查询的答案,应该为 a [ p ] a[p] a[p] + ∑ i = 1 p s u m [ i ] sum_{i=1}^p sum[i] i=1psum[i]
    ac_code:

    #define mid ((l + r) >> 1)
    int n, m;
    ll a[maxn << 2];
    ll sum[maxn << 2];
    ll lazy[maxn << 2];
    void PushUp(int rt) {
        sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
    }
    void PushDown(int rt, ll len) {
        if (lazy[rt]) {
            lazy[rt << 1] += lazy[rt];
            lazy[rt << 1 | 1] += lazy[rt];
            sum[rt << 1] += (len - (len >> 1)) * lazy[rt];
            sum[rt << 1 | 1] += (len >> 1) * lazy[rt];
            lazy[rt] = 0;
        }
    }
    void Update(int rt, int l, int r, int L, int R, ll val) {
        if (L <= l && r <= R) {
            sum[rt] += (r - l + 1) * val;
            lazy[rt] += val;
            return;
        }
        PushDown(rt, r - l + 1);
        int md = mid;
        if (md >= L) Update(rt << 1, l, md, L, R, val);
        if (md < R) Update(rt << 1 | 1, mid + 1, r, L, R, val);
        PushUp(rt);
    }
    ll Query(int rt, int l, int r, int L, int R) {
        if (L <= l && r <= R) return sum[rt];
        PushDown(rt, r - l + 1);
        int md = mid;
        ll ret = 0;
        if (md >= L) ret += Query(rt << 1, l, md, L, R);
        if (md < R) ret += Query(rt << 1 | 1, md + 1, r, L, R);
        return ret;
    }
    int main() {
        n = read, m = read;
        for (int i = 1; i <= n; i++) a[i] = read;
        ll L, R, K, D, op;
        int p;
        // puts("ok");
        while (m--) {
            op = read;
            if (op == 1) {
                L = read, R = read, K = read, D = read;
                Update(1, 1, n, L, L, K);
                if (L < R) Update(1, 1, n, L + 1, R, D);
                ll tot = R - L;
                if (R != n) Update(1, 1, n, R + 1, R + 1, -1 * (K + (tot * D)));
            } else {
                p      = read;
                ll ans = a[p] + Query(1, 1, n, 1, p);
                printf("%lld
    ", ans);
            }
        }
        return 0;
    }
    /**
    
    
    **/
    
  • 相关阅读:
    事件处理(三)
    事件处理(二)
    事件处理(一)
    布局管理器(一)
    基本控件(三)
    基本控件(二)
    基本控件使用(一)
    Activity与界面
    多态
    final关键字
  • 原文地址:https://www.cnblogs.com/PushyTao/p/15459790.html
Copyright © 2020-2023  润新知