• CodeForces 55D Beautiful numbers(数位dp)


    E - Beautiful numbers
    Time Limit:4000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer number is beautiful if and only if it is divisible by each of its nonzero digits. We will not argue with this and just count the quantity of beautiful numbers in given ranges.

    Input

    The first line of the input contains the number of cases t (1 ≤ t ≤ 10). Each of the next t lines contains two natural numbers li and ri (1 ≤ li ≤ ri ≤ 9 ·1018).

    Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preffered to use cin (also you may use %I64d).

    Output

    Output should contain t numbers — answers to the queries, one number per line — quantities of beautiful numbers in given intervals (from li to ri, inclusively).

    Sample Input

    Input
    1
    1 9
    Output
    9
    Input
    1
    12 15
    Output
    2
    /*
    CodeForces 55D Beautiful numbers(数位dp)
    
    problem:
    问[l,r]之间有多少个能被它所包含的非零数整除
    
    solve:
    如果能这些数整除,则能被他们的最小公倍数整除. 1~9的最小公倍数为2520,所以在过程中维护lcm和这个数对2520的取余
    而且可以处理出1~9的所有lcm,离散化处理.
    
    hhh-2016-08-25 16:56:23
    */
    #pragma comment(linker,"/STACK:124000000,124000000")
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <math.h>
    #include <queue>
    #include <map>
    #define lson  i<<1
    #define rson  i<<1|1
    #define ll long long
    #define clr(a,b) memset(a,b,sizeof(a))
    #define scanfi(a) scanf("%d",&a)
    #define scanfl(a) scanf("%I64d",&a)
    #define key_val ch[ch[root][1]][0]
    #define inf 0x3f3f3f3f
    using namespace std;
    const ll mod = 2520;
    const int maxn = 100010;
    int tot,t[maxn];
    ll dp[20][3000][50];
    int bin[3000];
    int cnt = 0;
    int lcm(int a,int b)
    {
        if(!a && !b)
            return 0;
        if(!a)  return b;
        if(!b)  return a;
        int ta=a,tb=b;
        while(a % b != 0)
        {
            int p = a % b;
            a = b;
            b = p;
        }
        return ta/b*tb;
    }
    
    int fin(int pos)
    {
        int l = 0,r = cnt-1;
        while(l < r)
        {
            int mid = (l+r) >> 1;
            if(bin[mid] > pos)
            {
                r = mid -1;
            }
            else if(bin[mid] == pos)
            {
                return mid;
            }
            else
                l = mid + 1;
        }
    }
    
    ll dfs(int len,int nex,int div,int flag)
    {
        if(len < 0 && div == 0)
            return 0;
        if(len < 0)
            return nex % div == 0;
        int tp = bin[div];
        if(dp[len][nex][tp] != -1 && !flag)
            return dp[len][nex][tp] ;
        ll ans = 0;
        int n = flag ? t[len] : 9;
        for(int i = 0; i <= n; i++)
        {
            int lc;
            lc = lcm(div,i);
    //        cout << lc <<" " << i <<endl;
            int ta = (nex*10+i) % mod;
            ans += dfs(len-1,ta,lc,flag && i == n);
        }
    //    cout << ans<<" "<<div<<endl;
        if(!flag)
            dp[len][nex][tp] = ans;
        return ans;
    }
    
    ll cal(ll a)
    {
        tot = 0;
        while(a)
        {
            int p = a%10LL;
            t[tot++] = p;
            a /= 10LL;
        }
        ll ans = 0;
        ans += dfs(tot-1,0,0,1);
        return ans;
    }
    ll a,b;
    int main()
    {
        int T;
        cnt = 0;
        bin[cnt++] = 0;
        for(int i = 1;i <= mod;i++)
        {
            if(mod % i == 0)
               bin[i] = cnt++;
        }
    //    freopen("in.txt","r",stdin);
        memset(dp,-1,sizeof(dp));
        scanfi(T);
    
        while(T--)
        {
            scanfl(a),scanfl(b);
            printf("%I64d
    ",cal(b) - cal(a-1));
        }
    }
    

      

  • 相关阅读:
    调查问卷
    SQL 基础学习(1):下载DB Browser for SQLite. 下载graphviz(为了使用Rails ERD的前提)出现❌,已debug.
    路由完整实例代码
    如何自定义JSTL标签与SpringMVC 标签的属性中套JSTL标签报错的解决方法
    CSS样式表、JS脚本加载顺序与SpringMVC在URL路径中传参数与SpringMVC 拦截器
    SpringMVC的解释与搭建Maven私有代理服务器
    单调队列 bzoj3126 [Usaco2013 Open]Photo
    二分图 crf的军训
    单调队列 JC loves Mkk
    测试开发CICD——Git——window上安装git——配置基本信息
  • 原文地址:https://www.cnblogs.com/Przz/p/5812363.html
Copyright © 2020-2023  润新知