• HDU 5726 GCD 区间GCD=k的个数


    GCD

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2742    Accepted Submission(s): 980


    Problem Description
    Give you a sequence of N(N100,000) integers : a1,...,an(0<ai1000,000,000). There are Q(Q100,000) queries. For each query l,r you have to calculate gcd(al,,al+1,...,ar) and count the number of pairs(l,r)(1l<rN)such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).
     
    Input
    The first line of input contains a number T, which stands for the number of test cases you need to solve.

    The first line of each case contains a number N, denoting the number of integers.

    The second line contains N integers, a1,...,an(0<ai1000,000,000).

    The third line contains a number Q, denoting the number of queries.

    For the next Q lines, i-th line contains two number , stand for the li,ri, stand for the i-th queries.
     
    Output
    For each case, you need to output “Case #:t” at the beginning.(with quotes, t means the number of the test case, begin from 1).

    For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs(l,r) such that gcd(al,al+1,...,ar) equal gcd(al,al+1,...,ar).
     
    Sample Input
    1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
     
    Sample Output
    Case #1: 1 8 2 4 2 4 6 1
    /*
    HDU 5726 GCD 区间GCD=k的个数
    
    problem:
    给你一列数字,然后是m个询问,每次询问区间[l,r]的gcd以及整个序列中有多少个区间的gcd与之相等
    
    solve:
    第一个可以通过线段树或者类rmq的方法来解决.但是求区间的个数就不知怎么弄了- -
    最开始想的是每次询问求出值之后用 二分+枚举右端点 的思路来查找有多少个区间的
    但是发现整个是递减的,感觉很难确定区间的大小,卒.
    
    看别人题解才发现可以预处理,就一个左端点l而言,[l+1,n]中的到l的区间gcd是递减的.
    例:
    GCD[l,j] = 4,GCD[l,j+1] = 4,GCD[l,j+2] = 2
    感觉题解相当于枚举以l为左点的所有区间GCD值,然后二分到当前GCD值的最右点,计算出区间的个数
    
    因此会涉及很多次区间GCD查询,用线段树的话超时,用RMQ实现O(1)的查询AC
    至于时间复杂度, 并不会算QAQ
    
    hhh-2016-08-15 21:35:11
    */
    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <map>
    #define lson  i<<1
    #define rson  i<<1|1
    #define ll long long
    #define key_val ch[ch[root][1]][0]
    using namespace std;
    const int maxn = 100010;
    const int inf = 0x3f3f3f3f;
    int a[maxn];
    int m[maxn];
    int dp[maxn][20];
    
    ll gcd(ll a,ll b)
    {
        if(b==0) return a;
        else return gcd(b,a%b);
    }
    void iniRMQ(int n,int c[])
    {
        m[0] = -1;
        for(int i = 1; i <= n; i++)
        {
            m[i] = ((i&(i-1)) == 0)? m[i-1]+1:m[i-1];
            dp[i][0] = c[i];
        }
        for(int j = 1; j <= m[n]; j++)
        {
            for(int i = 1; i+(1<<j)-1 <= n; i++)
                dp[i][j] = gcd(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
        }
    }
    
    int RMQ(int x,int y)
    {
        int k = m[y-x+1];
        return gcd(dp[x][k],dp[y-(1<<k)+1][k]);
    }
    
    map<int,ll>mp;
    
    void ini(int n)
    {
        mp.clear();
        for(int i = 1;i <= n;i++)
        {
           int now = a[i],j = i;
           while(j <= n)
           {
               int l = j,r = n;
               while(l < r)
               {
                   int mid = (l+r+1) >> 1;
                   if(RMQ(i,mid) == now)
                    l = mid;
                   else
                    r = mid-1;
               }
               mp[now] += (ll)(l-j+1);
               j = l+1;
               now = RMQ(i,j);
           }
        }
    }
    
    int main()
    {
        int T,n,m;
        int cas = 1;
    //    freopen("in.txt","r",stdin);
        scanf("%d",&T);
        while(T--)
        {
            printf("Case #%d:
    ",cas++);
            scanf("%d",&n);
            for(int i = 1; i <= n; i++)
            {
                scanf("%d",&a[i]);
            }
            iniRMQ(n,a);
            ini(n);
            scanf("%d",&m);
            int a,b;
            for(int i =1; i <= m; i++)
            {
                scanf("%d%d",&a,&b);
                int ans1 = RMQ(a,b);
                printf("%d %I64d
    ",ans1,mp[ans1]);
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    Delegate、Predicate、Action和Func
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
    xgqfrms™, xgqfrms® : xgqfrms's offical website of GitHub!
  • 原文地址:https://www.cnblogs.com/Przz/p/5792152.html
Copyright © 2020-2023  润新知