Time Limit: 10000MS | Memory Limit: 32768KB | 64bit IO Format: %lld & %llu |
Description
The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with the query like to simply find the k-th smallest number of the given N numbers. They have developed a more powerful system such that for N numbers a[1], a[2], ..., a[N], you can ask it like: what is the k-th smallest number of a[i], a[i+1], ..., a[j]? (For some i<=j, 0<k<=j+1-i that you have given to it). More powerful, you can even change the value of some a[i], and continue to query, all the same.
Your task is to write a program for this computer, which
- Reads N numbers from the input (1 <= N <= 50,000)
- Processes M instructions of the input (1 <= M <= 10,000). These instructions include querying the k-th smallest number of a[i], a[i+1], ..., a[j] and change some a[i] to t.
Input
The first line of the input is a single number X (0 < X <= 4), the number of the test cases of the input. Then X blocks each represent a single test case.
The first line of each block contains two integers N and M, representing N numbers and M instruction. It is followed by N lines. The (i+1)-th line represents the number a[i]. Then M lines that is in the following format
Q i j k or
C i t
It represents to query the k-th number of a[i], a[i+1], ..., a[j] and change some a[i] to t, respectively. It is guaranteed that at any time of the operation. Any number a[i] is a non-negative integer that is less than 1,000,000,000.
There're NO breakline between two continuous test cases.
Output
For each querying operation, output one integer to represent the result. (i.e. the k-th smallest number of a[i], a[i+1],..., a[j])
There're NO breakline between two continuous test cases.
Sample Input
2
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
Sample Output
3
6
3
6
/* study zoj2112 树状数组+主席树 区间动第k大 开始想了一下,如果只用主席树在修改的时候差不多要修改所有的树 然后看了下树状数组套主席树, 相当于我们先照静态第k大建好树,然后把修改操作通过树状数组另外建一个树 于是在查询的时候只要通过树状数组得出增减情况再加上最初的 hhh-2016-02-19 15:03:33 */ #include <functional> #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <map> #include <cmath> using namespace std; const int maxn = 60010; int n,m; int a[maxn],t[maxn]; int T[maxn],val[maxn*40],lson[maxn*40],rson[maxn*40]; int tot; void ini_hash(int num) //排序去重 { sort(t,t+num); m = unique(t,t+num)-t; } int Hash(int x) //获得x在排序去重后的位置 { return lower_bound(t,t+m,x) - t; } int build(int l,int r) { int root = tot++; val[root] = 0; if(l != r) { int mid = (l+r)>>1; lson[root] = build(l,mid); rson[root] = build(mid+1,r); } return root; } //如果那里发生改变则兴建一个节点而非像平常修改那个节点的值 int update(int root,int pos,int va) { int newroot = tot++; int tmp = newroot; val[newroot] = val[root] + va; int l = 0,r = m-1; while(l < r) { int mid = (l+r)>>1; if(pos <= mid) { lson[newroot] = tot++; rson[newroot] = rson[root]; newroot = lson[newroot]; root = lson[root]; r = mid; } else { lson[newroot] = lson[root]; rson[newroot] = tot++; newroot = rson[newroot]; root = rson[root]; l = mid+1; } val[newroot] = val[root] + va; } return tmp; } int s[maxn]; int cur[maxn]; int lowbit(int x) { return x&(-x); } //void add(int x,int pos,int va) //{ // while(x < n) // { // s[x] = update(s[x],pos,va); // x += lowbit(x); // } //} int sum(int x) { int cn = 0; while(x>0) { cn += val[lson[cur[x]]]; x -= lowbit(x); } return cn; } int query(int lt,int rt,int k) { int l = 0, r = m-1; int lroot = T[lt-1]; int rroot = T[rt]; for(int i = lt-1; i; i-=lowbit(i)) cur[i] = s[i]; for(int i = rt; i; i-=lowbit(i)) cur[i] = s[i]; while(l < r) { int mid = (l+r)>>1; int tmp = sum(rt)-sum(lt-1)+val[lson[rroot]]-val[lson[lroot]]; if(tmp >= k) { for(int i = lt-1; i; i-=lowbit(i)) cur[i] = lson[cur[i]]; for(int i = rt; i; i-=lowbit(i)) cur[i] = lson[cur[i]]; lroot = lson[lroot]; rroot = lson[rroot]; r = mid; } else { k -= tmp; for(int i = lt-1; i; i-=lowbit(i)) cur[i] = rson[cur[i]]; for(int i = rt; i; i-=lowbit(i)) cur[i] = rson[cur[i]]; lroot = rson[lroot]; rroot = rson[rroot]; l = mid+1; } } return l; } void change(int root,int pos,int va) { while(root <= n) { s[root] = update(s[root],pos,va); root += lowbit(root); } } struct node { int l,r,kind,k; } qry[10010]; int main() { int q,cas; scanf("%d",&cas); while(cas--) { m = 0; tot = 0; scanf("%d%d",&n,&q) ; for(int i = 1; i <= n; i++) { scanf("%d",&a[i]); t[m++] = a[i]; } char ask[10]; int l,r,k; for(int i = 1; i <= q; i++) { scanf("%s",ask); if(ask[0] == 'Q') { scanf("%d%d%d",&l,&r,&k); qry[i].l = l; qry[i].r = r; qry[i].k = k; qry[i].kind = 0; } else { scanf("%d%d",&l,&r);//将l位置的数改为r qry[i].l = l; qry[i].r = r; qry[i].kind = 1; t[m++] = qry[i].r; } } ini_hash(m); T[0] = build(0,m-1); for(int i = 1; i <= n; i++) T[i] = update(T[i-1],Hash(a[i]),1); for(int i =1; i <= n; i++) { s[i] = T[0]; } for(int i =1; i <= q; i++) { if(qry[i].kind == 0) { printf("%d ",t[query(qry[i].l,qry[i].r,qry[i].k)]); } else { change(qry[i].l,Hash(a[qry[i].l]),-1); change(qry[i].l,Hash(qry[i].r),1); a[qry[i].l] = qry[i].r; } } } return 0; }