• hdu 3308 最长连续上升区间


    LCIS

    Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 6066    Accepted Submission(s): 2634


    Problem Description
    Given n integers.
    You have two operations:
    U A B: replace the Ath number by B. (index counting from 0)
    Q A B: output the length of the longest consecutive increasing subsequence (LCIS) in [a, b].
     
    Input
    T in the first line, indicating the case number.
    Each case starts with two integers n , m(0<n,m<=105).
    The next line has n integers(0<=val<=105).
    The next m lines each has an operation:
    U A B(0<=A,n , 0<=B=105)
    OR
    Q A B(0<=A<=B< n).
     
    Output
    For each Q, output the answer.
     
    Sample Input
    1
    10 10
    7 7 3 3 5 9 9 8 1 8 
    Q 6 6
    U 3 4
    Q 0 1
    Q 0 5
    Q 4 7
    Q 3 5
    Q 0 2
    Q 4 6
    U 6 10
    Q 0 9
    Sample Output
    1
    1
    4
    2
    3
    1
    2
    5
    Author
    shǎ崽
     
    Source
    /*
    hdu 3308 最长连续上升区间
    
    给你n个数,然后是两个操作:
    1.U A B 将第A个数替换成B
    2.Q A B 查询[A,B]间的最长连续上升序列长度
    
    看见题就感觉像前面写过的hdu1540最长连续序列,只是它那个序列是固定的
    连续递增,只需要维护一下即可
    所以在本题中我新增了lval,rval记录区间最左边和最右边的值,然后通过判断
    这两个值来进行区间合并。同时用ls,rs,ms分别记录 从区间左端开始,区间
    右端开始,整个区间 的最长连续上升序列
    
    然后通过线段树来维护ls,rs,ms的值,然后查询进行一下判断即可
    
    hhh-2016-03-31 19:50:28
    */
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <functional>
    using namespace std;
    #define lson  (i<<1)
    #define rson  ((i<<1)|1)
    typedef long long ll;
    const int maxn = 200050;
    
    struct node
    {
        int l,r;
        int ls,rs,ms;
        int lval,rval;
        int mid()
        {
            return (l+r)>>1;
        }
        int len()
        {
            return (r-l+1);
        }
    } tree[maxn<<2];
    
    void push_up(int i)
    {
        tree[i].ls = tree[lson].ls,tree[i].lval=tree[lson].lval;
        tree[i].rs = tree[rson].rs,tree[i].rval=tree[rson].rval;
        //如果可以合并(ls,rs可能超过区间的一般)
        if(tree[i].ls == tree[lson].len() && tree[lson].rval < tree[rson].lval)
            tree[i].ls += tree[rson].ls;
        if(tree[i].rs == tree[rson].len() && tree[lson].rval < tree[rson].lval)
            tree[i].rs += tree[lson].rs;
        tree[i].ms = max(tree[lson].ms,tree[rson].ms);
        if(tree[lson].rval < tree[rson].lval)
            tree[i].ms = max(tree[i].ms,tree[lson].rs+tree[rson].ls);
                         //可能跨过了mid界限
    }
    
    void build(int i,int l,int r)
    {
        tree[i].l = l,tree[i].r = r;
        tree[i].ls=tree[i].rs=tree[i].ms=0;
        tree[i].lval=tree[i].rval=0;
        if(l == r)
        {
            scanf("%d",&tree[i].lval);
            tree[i].rval = tree[i].lval;
            tree[i].ls=tree[i].rs=tree[i].ms=1;
            return ;
        }
        int mid = tree[i].mid();
        build(lson,l,mid);
        build(rson,mid+1,r);
        push_up(i);
    }
    
    void push_down(int i)
    {
    
    }
    
    void update(int i,int k,int va)
    {
        if(tree[i].l == k && tree[i].r == k)
        {
            tree[i].lval = va;
            tree[i].rval = va;
            return;
        }
        push_down(i);
        int mid = tree[i].mid();
        if(k <= mid)
            update(lson,k,va);
        else
            update(rson,k,va);
        push_up(i);
    }
    
    int query(int i,int l,int r)
    {
        if(tree[i].l == l && tree[i].r == r)
        {
            return tree[i].ms;
        }
        int mid = tree[i].mid();
        if(r <= mid)
            return query(lson,l,r);
        else if(l > mid)
            return query(rson,l,r);
        else
        {
            int ans1 = query(lson,l,mid);
            int ans2 = query(rson,mid+1,r);
            if(tree[lson].rval < tree[rson].lval)  //如果可以合并(ls,rs有可能超出查询区间)
                return max(max(ans1,ans2),min(tree[lson].rs,mid-l+1)+min(tree[rson].ls,r-mid));
            else
                return max(ans1,ans2);
        }
    }
    char op[10];
    int x,y;
    int T,n,m;
    int main()
    {
        scanf("%d",&T);
        while(T--)
        {
           scanf("%d%d",&n,&m);
           build(1,0,n-1);
    
           while(m--)
           {
               scanf("%s",op);
               scanf("%d%d",&x,&y);
               if(op[0] == 'Q')
               {
                   printf("%d
    ",query(1,x,y));
               }
               else
               {
                   update(1,x,y);
               }
           }
        }
        return 0;
    }
    

      

    
    
  • 相关阅读:
    团队项目博客---移山小分队---10
    个人项目博客----移山小分队----09
    团队项目博客---移山小分队---9
    个人项目博客----移山小分队----08
    团队项目博客---移山小分队---8
    个人项目博客----移山小分队----07
    团队项目博客---移山小分队---7
    浪潮之巅阅读笔记06
    浪潮之巅阅读笔记05
    构建之法阅读笔记03
  • 原文地址:https://www.cnblogs.com/Przz/p/5409582.html
Copyright © 2020-2023  润新知