• SPOJ PHRASES 每个字符串至少出现两次且不重叠的最长子串


    Description

    You are the King of Byteland. Your agents have just intercepted a batch of encrypted enemy messages concerning the date of the planned attack on your island. You immedietaly send for the Bytelandian Cryptographer, but he is currently busy eating popcorn and claims that he may only decrypt the most important part of the text (since the rest would be a waste of his time). You decide to select the fragment of the text which the enemy has strongly emphasised, evidently regarding it as the most important. So, you are looking for a fragment of text which appears in all the messages disjointly at least twice. Since you are not overfond of the cryptographer, try to make this fragment as long as possible.

    Input

    The first line of input contains a single positive integer t<=10, the number of test cases. t test cases follow. Each test case begins with integer n (n<=10), the number of messages. The next n lines contain the messages, consisting only of between 2 and 10000 characters 'a'-'z', possibly with some additional trailing white space which should be ignored.

    Output

    For each test case output the length of longest string which appears disjointly at least twice in all of the messages.

    Example

    Input:
    1
    4
    abbabba
    dabddkababa
    bacaba
    baba
    
    Output:
    2



    /*
    SPOJ PHRASES 每个字符串至少出现两次且不重叠的最长子串
    
    因为是求的最长子串,所以考虑二分长度len
    然后我们需要对其进行判断,对于每一个连续大于等于len的height[](分组讨论)
    记录各个串中的情况,因为要判断不是重叠的,所以对于每个串,我们记录
    它满足height>=len的最大最小位置
    如果所有串的max-min >= len 则说明存在长度为len的子串在
    每个串都有出现两次且不重叠
    
    感觉思路没什么问题,主要是最开始代码写得不够简洁,而且WR
    
    hhh-2016-03-21 23:01:01
    */
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <iostream>
    #include <cstring>
    #include <map>
    #include <cstdio>
    #include <vector>
    #include <functional>
    #define lson (i<<1)
    #define rson ((i<<1)|1)
    using namespace std;
    typedef long long ll;
    const int maxn = 101000;
    
    int t1[maxn],t2[maxn],c[maxn];
    bool cmp(int *r,int a,int b,int l)
    {
        return r[a]==r[b] &&r[l+a] == r[l+b];
    }
    
    void get_sa(int str[],int sa[],int Rank[],int height[],int n,int m)
    {
        n++;
        int p,*x=t1,*y=t2;
        for(int i = 0; i < m; i++) c[i] = 0;
        for(int i = 0; i < n; i++) c[x[i] = str[i]]++;
        for(int i = 1; i < m; i++) c[i] += c[i-1];
        for(int i = n-1; i>=0; i--) sa[--c[x[i]]] = i;
        for(int j = 1; j <= n; j <<= 1)
        {
            p = 0;
            for(int i = n-j; i < n; i++) y[p++] = i;
            for(int i = 0; i < n; i++) if(sa[i] >= j) y[p++] = sa[i]-j;
            for(int i = 0; i < m; i++) c[i] = 0;
            for(int i = 0; i < n; i++) c[x[y[i]]]++ ;
            for(int i = 1; i < m; i++) c[i] += c[i-1];
            for(int i = n-1; i >= 0; i--)  sa[--c[x[y[i]]]] = y[i];
    
            swap(x,y);
            p = 1;
            x[sa[0]] = 0;
            for(int i = 1; i < n; i++)
                x[sa[i]] = cmp(y,sa[i-1],sa[i],j)? p-1:p++;
            if(p >= n) break;
            m = p;
        }
        int k = 0;
        n--;
        for(int i = 0; i <= n; i++)
            Rank[sa[i]] = i;
        for(int i = 0; i < n; i++)
        {
            if(k) k--;
            int j = sa[Rank[i]-1];
            while(str[i+k] == str[j+k]) k++;
            height[Rank[i]] = k;
        }
    }
    
    int Rank[maxn];
    int sa[maxn];
    int str[maxn],height[maxn];
    char s[maxn];
    int id[maxn];
    struct node
    {
        int Min;
        int Max;
        int flag;
    } anspos[15];
    
    
    void ini()
    {
        for(int i = 0; i <= 12; i++)
            anspos[i].Min = 0x3f3f3f3f,anspos[i].Max = -1;
    }
    
    bool can(int len,int n,int num)
    {
        int l = 2,r = 2;
        ini();
        for(int i = 2; i <= n; i++)
        {
            if(height[i] >= len)
            {
                int id1=id[sa[i-1]];
                int id2=id[sa[i]];
    
                anspos[id1].Max=max(anspos[id1].Max,sa[i-1]);
                anspos[id1].Min=min(anspos[id1].Min,sa[i-1]);
    
                anspos[id2].Max=max(anspos[id2].Max,sa[i]);
                anspos[id2].Min=min(anspos[id2].Min,sa[i]);
                int t;
                for(t = 0; t < num; t++)
                    if(anspos[t].Max - anspos[t].Min < len)
                        break;
                if(t == num)
                    return 1;
            }
            else
            {
                for(int j = 0; j <= 10; j++)
                    anspos[j].Min = 0x3f3f3f3f,anspos[j].Max = -1;
            }
        }
        for(int i = 0; i < num; i++)
            if(!anspos[i].flag)
                return 0;
        return 1;
    }
    
    int main()
    {
        int k,n,t;
        scanf("%d",&t);
        while(t--)
        {
            ini();
            int tot = 0,len = 0x3f3f3f3f;
            scanf("%d",&n);
            for(int i = 0; i < n; i++)
            {
                scanf("%s",s);
                for(int j = 0; s[j]!=''; j++)
                {
                    id[tot] = i;
                    str[tot++] = s[j]-'a'+10;
                }
                id[tot] = i;
                str[tot++] = i;
                len = min(len,(int)strlen(s));
            }
            str[tot] = 0;
            get_sa(str,sa,Rank,height,tot,100);
            int l = 0,r = len;
            int ans = 0;
            while(l <= r)
            {
                int mid = (l+r)>>1;
                if(can(mid,tot,n))
                {
                    ans = mid;
                    l = mid+1;
                }
                else
                    r = mid-1;
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    Java中的集合Queue
    CountDownTimer
    CountDownTimer
    CountDownTimer
    CountDownTimer
    【10月新版】Aspose.Pdf 10月新版V17.10发布 | 附下载
    【10月新版】Aspose.Pdf 10月新版V17.10发布 | 附下载
    【10月新版】Aspose.Pdf 10月新版V17.10发布 | 附下载
    【10月新版】Aspose.Pdf 10月新版V17.10发布 | 附下载
    什么是区块链 Layer 0 扩容
  • 原文地址:https://www.cnblogs.com/Przz/p/5409573.html
Copyright © 2020-2023  润新知