• poj2406 连续重复子串


    Power Strings
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 41110   Accepted: 17099

    Description

    Given two strings a and b we define a*b to be their concatenation. For example, if a = "abc" and b = "def" then a*b = "abcdef". If we think of concatenation as multiplication, exponentiation by a non-negative integer is defined in the normal way: a^0 = "" (the empty string) and a^(n+1) = a*(a^n).

    Input

    Each test case is a line of input representing s, a string of printable characters. The length of s will be at least 1 and will not exceed 1 million characters. A line containing a period follows the last test case.

    Output

    For each s you should print the largest n such that s = a^n for some string a.


    /*
    poj2406 连续重复子串
    
    给你一个字符串,请问最多能由任意字符串重复多少次得到
    
    最开始用的是DA算法
    想的是枚举长度然后进行一下判断即可,只需要判断Rank[0]和Rank[k]是否为n-k
    (因为如果相等,0~k = k+1~2*k+1 .... 递推下去 整个串是0~k的子串不断
     重复得到)
    但是MLE.估计是处理RMQ时有问题,而且看了别人报告才发现这并不是最优方法。
    因为我们求的是所有数到Rank[0],所以直接从rank[0]的位置往两边扫一遍就行了
    但是DA算法nlog(n)好像会TLE- -
    于是乎重新去搞了DC3的算法,才搞定 2600ms
    
    而且感觉kmp更适合这个(看比人代码很短的样子)
    
    hhh-2016-03-13 18:11:02
    */
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <stack>
    #include <map>
    using namespace std;
    typedef long long ll;
    typedef long double ld;
    #define lson (i<<1)
    #define rson ((i<<1)|1)
    const int maxn = 2000001;
    
    #define F(x) ((x)/3+((x)%3==1?0:tb))
    #define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2)
    int wsf[maxn],wa[maxn],wb[maxn],wv[maxn],sa[maxn],Rank[maxn],
    height[maxn],f[maxn];
    int str[maxn];
    
    int c0(int *r,int a,int b)
    {
        return r[a]==r[b]&&r[a+1]==r[b+1]&&r[a+2]==r[b+2];
    }
    int c12(int k,int *r,int a,int b)
    {
        if(k==2) return r[a]<r[b]||r[a]==r[b]&&c12(1,r,a+1,b+1);
        else return r[a]<r[b]||r[a]==r[b]&&wv[a+1]<wv[b+1];
    }
    void sort(int *r,int *a,int *b,int n,int m)
    {
        int i;
        for(i=0; i<n; i++) wv[i]=r[a[i]];
        for(i=0; i<m; i++) wsf[i]=0;
        for(i=0; i<n; i++) wsf[wv[i]]++;
        for(i=1; i<m; i++) wsf[i]+=wsf[i-1];
        for(i=n-1; i>=0; i--) b[--wsf[wv[i]]]=a[i];
        return;
    }
    void dc3(int *r,int *sa,int n,int m)
    {
        int i,j,*rn=r+n,*san=sa+n,ta=0,tb=(n+1)/3,tbc=0,p;
        r[n]=r[n+1]=0;
        for(i=0; i<n; i++) if(i%3!=0) wa[tbc++]=i;
        sort(r+2,wa,wb,tbc,m);
        sort(r+1,wb,wa,tbc,m);
        sort(r,wa,wb,tbc,m);
        for(p=1,rn[F(wb[0])]=0,i=1; i<tbc; i++)
            rn[F(wb[i])]=c0(r,wb[i-1],wb[i])?p-1:p++;
        if(p<tbc) dc3(rn,san,tbc,p);
        else for(i=0; i<tbc; i++) san[rn[i]]=i;
        for(i=0; i<tbc; i++) if(san[i]<tb) wb[ta++]=san[i]*3;
        if(n%3==1) wb[ta++]=n-1;
        sort(r,wb,wa,ta,m);
        for(i=0; i<tbc; i++) wv[wb[i]=G(san[i])]=i;
        for(i=0,j=0,p=0; i<ta && j<tbc; p++)
            sa[p]=c12(wb[j]%3,r,wa[i],wb[j])?wa[i++]:wb[j++];
        for(; i<ta; p++) sa[p]=wa[i++];
        for(; j<tbc; p++) sa[p]=wb[j++];
        return;
    }
    void getheight(int *r,int n)//n不保存最后的0
    {
        int i,j,k=0;
        for(i=1; i<=n; i++)  Rank[sa[i]]=i;
        for(i=0; i<n; i++)
        {
            if(k)
                k--;
            else
                k=0;
            j=sa[Rank[i]-1];
            while(r[i+k]==r[j+k])
                k++;
            height[Rank[i]]=k;
        }
    }
    int rm[maxn];
    char ts[maxn];
    
    void iniRMQ(int len)
    {
        int to = Rank[0];
        rm[to] = maxn;
        for(int i = to - 1;i >= 0;i--)
        {
            if(height[i+1] < rm[i+1]) rm[i] = height[i+1];
            else rm[i] = rm[i+1];
        }
    
        for(int i = to+1;i <= len;i++)
        {
            if(height[i] < rm[i-1]) rm[i] = height[i];
            else rm[i] = rm[i-1];
        }
    }
    
    int solve(int len)
    {
        for(int i = 1;i <= len/2;i++)
        {
            if(len % i) continue;
            if(rm[Rank[i]] == len-i) return len/i;
        }
        return 1;
    }
    
    int main()
    {
        while(scanf("%s",ts) != EOF)
        {
            if(ts[0] == '.')
                break;
            int len = strlen(ts);
            for(int i = 0; i < len; i++)
                str[i] = ts[i];
            str[len] = 0;
    
            dc3(str,sa,len+1,300);
            getheight(str,len);
            iniRMQ(len);
            printf("%d
    ",solve(len));
        }
        return 0;
    }
    

      


  • 相关阅读:
    团队展示&选题
    结对编程(JAVA实现)
    wc项目(node.js实现)
    复审与事后分析
    事后诸葛亮分析报告
    Alpha阶段项目复审
    测试与发布
    Scrum 冲刺第五篇
    Scrum 冲刺第一篇
    项目冲刺
  • 原文地址:https://www.cnblogs.com/Przz/p/5409571.html
Copyright © 2020-2023  润新知