这道题唯一重要的是告诉了我一条直线上带权选址问题的通解。
题解
先将所有点根据距离排序,选址点 (x) 即是距离最左边的距离最小的点且满足:
[sum_{i=l}^x w_i ge sum_{i=x+1}^r w_i
]
然后用树状数组和线段树维护一下就可以了。
代码如下
#include<bits/stdc++.h>
using namespace std;
#define Lint long long
const int N=2e5+5;
const Lint MOD=1e9+7;
int n,m;
struct Box{Lint loc,weight;}a[N];
struct Push_R{Lint l,r,weight,cost;};
Push_R operator + (const Push_R a,const Push_R b)
{
Push_R res;
res.weight=(a.weight+b.weight)%MOD;
res.l=b.l-(a.r-a.l+1),res.r=b.r;
res.cost=(a.cost+b.cost+a.weight*(b.l-a.r-1))%MOD;
return res;
}
struct Push_L{Lint l,r,weight,cost;};
Push_L operator + (const Push_L a,const Push_L b)
{
Push_L res;
res.weight=(a.weight+b.weight)%MOD;
res.l=a.l,res.r=a.r+(b.r-b.l+1);
res.cost=(a.cost+b.cost+b.weight*(b.l-a.r-1))%MOD;
return res;
}
struct Seg_Tree
{
struct Node{Push_L L;Push_R R;}tr[N<<2];
void up(int u)
{
tr[u].L=tr[u<<1].L+tr[u<<1|1].L;
tr[u].R=tr[u<<1].R+tr[u<<1|1].R;
}
void build(int u,int l,int r,Box a[])
{
if(l==r)
{
tr[u].L.l=tr[u].L.r=a[l].loc;
tr[u].L.weight=a[l].weight,tr[u].L.cost=0;
tr[u].R.l=tr[u].R.r=a[l].loc;
tr[u].R.weight=a[l].weight,tr[u].R.cost=0;
return ;
}
int mid=(l+r)>>1;
build(u<<1,l,mid,a);
build(u<<1|1,mid+1,r,a);
up(u);
}
void chg(int u,int l,int r,int x,Box z)
{
if(l==r)
{
tr[u].L.weight=z.weight;
tr[u].R.weight=z.weight;
return ;
}
int mid=(l+r)>>1;
if(x<=mid) chg(u<<1,l,mid,x,z);
else chg(u<<1|1,mid+1,r,x,z);
up(u);
}
Push_L query_L(int u,int l,int r,int x,int y)
{
if(x<=l&&r<=y) return tr[u].L;
int mid=(l+r)>>1;Push_L tmp1,tmp2;
if(x<=mid) tmp1=query_L(u<<1,l,mid,x,y);
if(y>mid) tmp2=query_L(u<<1|1,mid+1,r,x,y);
if(x<=mid&&y>mid) return tmp1+tmp2;
return x<=mid?tmp1:tmp2;
}
Push_R query_R(int u,int l,int r,int x,int y)
{
if(x<=l&&r<=y) return tr[u].R;
int mid=(l+r)>>1;Push_R tmp1,tmp2;
if(x<=mid) tmp1=query_R(u<<1,l,mid,x,y);
if(y>mid) tmp2=query_R(u<<1|1,mid+1,r,x,y);
if(x<=mid&&y>mid) return tmp1+tmp2;
return x<=mid?tmp1:tmp2;
}
}t1;
struct Tree_Array
{
Lint tr[N];
int lowbit(int x){return x&(-x);}
void add(int k,Lint x){for(;k<=n;k+=lowbit(k))tr[k]+=x;}
Lint sum(int k){Lint res=0;for(;k;k-=lowbit(k))res+=tr[k];return res;}
}t2;
int main()
{
cin>>n>>m;
for(int i=1;i<=n;++i) scanf("%lld",&a[i].loc);
for(int i=1;i<=n;++i) scanf("%lld",&a[i].weight);
for(int i=1;i<=n;++i) t2.add(i,a[i].weight);
t1.build(1,1,n,a);
while(m--)
{
int x,y;
scanf("%d%d",&x,&y);
if(x<0)
{
t2.add(-x,-a[-x].weight);
a[-x].weight=y;
t1.chg(1,1,n,-x,a[-x]);
t2.add(-x,a[-x].weight);
}
else
{
int l=x,r=y,tmp=-1;
while(l<=r)
{
int mid=(l+r)>>1;
Lint sum1=t2.sum(mid)-t2.sum(x-1);
Lint sum2=t2.sum(y)-t2.sum(mid);
if(sum1>=sum2)
r=mid-1,tmp=mid;
else l=mid+1;
}
Push_R tmp1=t1.query_R(1,1,n,x,tmp);
Push_L tmp2=t1.query_L(1,1,n,tmp,y);
// printf("%d
",tmp);
// printf("%lld %lld
",tmp1.cost,tmp2.cost);
printf("%lld
",(tmp1.cost+tmp2.cost)%MOD);
}
}
return 0;
}