在洛谷上刷最短路的题然后被老师拉回去做算法笔记上面的题。。。
拿到这道题,先确定所有路径唯一,然后是无向边,那么对于边权处理,直接赋值为2的k次方就可以了,然后直接跑最短路。
这种思路非常暴力,但仔细看题目的数据范围,k<=500,ull你估计都存不下,没救。有的同学可能会想,反正最后都要mod 1e5,那我在存储的时候mod就行了嘛,很多题都可以这样。但是对于最短路,你明显不可能这么跑,看下面这个例子
显然,你处理之后肯定会出错,那你就要换个思想了。如果你把边权2^k直接存储为k会怎么样呢?如果再进行一次最小生成树,最终处理的结果和跑最短路的答案其实是一样的(如图)
这样来想,这道题就迎刃而解了,在处理好最小生成树之后,我们知道出发点,然后DFS一遍整颗树,处理出每一个边权,记住有可能会有孤儿城市,与其他城市不连通,特判为-1
#include<bits/stdc++.h>
using namespace std;
const int MAXN=1e5+50;
const int mod=100000;
int f[MAXN];
int n,m;
int po[505];
struct edge {
int to,net,v;
} ee[MAXN]; //链式前向星
int head[MAXN];
int find(int x) {
if(f[x]==x) return x;
return f[x]=find(f[x]);
}
void merge(int x,int y) {
f[find(x)]=find(y);
}//并查集标准操作
int tot;
void add(int u,int v,int w) {
ee[++tot].net=head[u];
ee[tot].to=v;
ee[tot].v=w;
head[u]=tot;
}//建边
int ans[MAXN];
bool vis[MAXN];
void dfs(int s) {
vis[s]=1; //已经走过这个点
for(register int i=head[s]; i; i=ee[i].net)
if(!vis[ee[i].to]) { //如果没有走过
ans[ee[i].to]=(ans[s]%mod+po[ee[i].v])%mod; //当前节点的距离是父亲节点的距离+当前的权值
dfs(ee[i].to); //继续找儿子节点
}
}
int main() {
po[0]=1;
for(register int i=1;i<500;i++) po[i]=po[i-1]%mod*2%mod; //预处理2的幂
while(scanf("%d%d",&n,&m)!=EOF) {
memset(ans,0,sizeof ans);
memset(ee,0,sizeof ee);
memset(f,0,sizeof f);
memset(vis,false,sizeof vis);
memset(head,0,sizeof head);
tot=0; //多组数据一定记得清空数组和变量
for(register int i=0; i<n; i++) f[i]=i; //并查集初始化
for(register int i=1; i<=m; i++) { //最小生成树的实现
int u,v;
scanf("%d%d",&u,&v);
int x=find(u),y=find(v);
if(x!=y) { //如果不在一个集合
add(u,v,i-1);
add(v,u,i-1); //建双向变
merge(x,y); //合并
} //标准的Kruskal
}
dfs(0); //dfs找路的长度
for(register int i=1; i<n; i++) {
if(vis[i]!=0) {
cout<<ans[i]%mod<<endl;
} else cout<<-1<<endl; //处理答案,如果没被访问过,说明是孤儿
}
}
return 0;
}