• 洛谷 P4175: bzoj 1146: [CTSC2008]网络管理


    令人抓狂的整体二分题。根本原因还是我太菜了。

    在学校写了一个下午写得头晕,回家里重写了一遍,一个小时就写完了……不过还是太慢。

    题目传送门:洛谷P4175

    题意简述:

    一棵 (n) 个结点的树,每个点有点权。

    (m) 次操作,每个操作要么是更改单点点权,要么是查询树链上第 (k) 大点权。

    题解:

    树套树固然可以,但是整体二分也很好。

    整体二分就是对于所有的询问一起二分答案,在二分区间范围内的查询和修改一并下传。

    这题把整体二分基础题的操作搬到了链上,但是实现方法并没有太大不同。

    初始点权看成增加点权,插入在所有操作的最前面即可。
    更改点权可以看成删除点权再增加点权,变成两次修改即可。

    这题整体二分要求第 (k) 大,考虑二分出的答案 (mid),将大于 (mid) 的修改转成单点权值 (pm 1)
    而对于树链查询第 (k) 大,则转化成链上权值之和是否等于 (k)

    写整体二分题永远要注意二分的条件,我的条件是,链上大于 (mid) 的点数小于 (k) 个则答案小于等于 (mid),否则答案大于 (mid)

    单点修改,树链查询要是还用树剖就太naive了,套路转化:

    考虑每个节点维护到根的路径上的信息,那么单点修改就变成子树修改,链查就变成四个单点查了(需要求LCA)。

    而子树是一个区间,区间加法,单点查询;再使用树状数组差分技巧转化成单点差分,区间前缀和。

    注意到还要求LCA,直接在DFS的时候用Tarjan处理就好了。

    关于判断无解:当然可以直接处理掉……不过这样就必须求树链长度了。
    我的方法是,往权值里面加一个-1,如果答案是-1,则真实答案应该是无解。

    我的代码还离散化了权值,其实没用……

    其他恶心的地方就是整体二分基本功了,太弱了调了好久……注意循环变量是指向真实操作的下标的指针还是真实操作的下标,如果你写结构体当我没说。

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    const int MN=80005;
    const int MM=110005;
    const int MQ=140005;
    int n,m,q,w[MN],d[MQ],c;
    int o[MQ],a[MQ],b[MQ],p[MQ],lc[MQ],ans[MQ];
    int eh[MN],qh[MN],nxt[MM*2],to[MM*2],tot;
    inline void ins(int*h,int x,int y){nxt[++tot]=h[x],to[tot]=y,h[x]=tot;}
    int ld[MN],rd[MN],faz[MN],dfc;
    int fa[MN];int ff(int x){return fa[x]?fa[x]=ff(fa[x]):x;}
    void dfs(int u,int f){
    	faz[u]=f,ld[u]=++dfc;
    	for(int i=eh[u];i;i=nxt[i])if(to[i]!=f)dfs(to[i],u),fa[to[i]]=u;
    	for(int i=qh[u];i;i=nxt[i])if(lc[to[i]])lc[to[i]]=ff(lc[to[i]]);else lc[to[i]]=u;
    	rd[u]=dfc;
    }
    int B[MN];
    inline void I(int i,int x){for(;i<=n;i+=i&-i)B[i]+=x;}
    inline int Q(int i){int a=0;for(;i;i-=i&-i)a+=B[i];return a;}
    int t[MQ];
    void s(int l,int r,int L,int R){
    	if(l>r)return;
    	if(L==R){for(int i=l;i<=r;++i)ans[p[i]]=L;return;}
    	int m=L+R>>1,p1=l-1,p2=r+1;
    	for(int j=l,i;j<=r;++j){
    		if(o[i=p[j]]>0){
    			int x=Q(ld[a[i]])+Q(ld[b[i]])-Q(ld[lc[i]])-Q(ld[faz[lc[i]]]);
    			if(x<o[i])o[i]-=x,t[++p1]=i;
    			else t[--p2]=i;
    		}
    		else if(b[i]>m){
    			I(ld[a[i]],o[i]?-1:1),I(rd[a[i]]+1,o[i]?1:-1);
    			t[--p2]=i;
    		}
    		else t[++p1]=i;
    	}
    	for(int i=l;i<=r;++i)if(o[p[i]]<=0&&b[p[i]]>m)I(ld[a[p[i]]],o[p[i]]?1:-1),I(rd[a[p[i]]]+1,o[p[i]]?-1:1);
    	reverse(t+p2,t+r+1),memcpy(p+l,t+l,r-l+1<<2);
    	s(l,p1,L,m),s(p2,r,m+1,R);
    }
    int main(){
    	scanf("%d%d",&n,&m);
    	for(int i=1;i<=n;++i)scanf("%d",&w[i]),o[++q]=0,a[q]=i,b[q]=w[i],p[q]=q;
    	for(int i=1,x,y;i<n;++i)scanf("%d%d",&x,&y),ins(eh,x,y),ins(eh,y,x);
    	for(int i=1;i<=m;++i){
    		++q,scanf("%d%d%d",&o[q],&a[q],&b[q]),p[q]=q;
    		if(!o[q])o[++q]=-1,a[q]=a[q-1],b[q]=w[a[q-1]],p[q]=q,w[a[q-1]]=b[q-1];
    	}
    	for(int i=1;i<=q;++i)if(o[i]>0)ins(qh,a[i],i),ins(qh,b[i],i);else d[++c]=b[i];
    	d[++c]=-1;sort(d+1,d+c+1);c=unique(d+1,d+c+1)-d-1;
    	for(int i=1;i<=q;++i)if(o[i]<=0)b[i]=lower_bound(d+1,d+c+1,b[i])-d;
    	dfs(1,0),s(1,q,1,c);
    	for(int i=1;i<=q;++i)if(o[i]>0)ans[i]==1?puts("invalid request!"):printf("%d
    ",d[ans[i]]);
    	return 0;
    }
    // 20:08 - 21:03
    
  • 相关阅读:
    tensorflow 学习笔记 多层感知机
    tensorflow 学习笔记(转)
    python学习笔记 map&&reduce
    java中的接口和php的接口的区别
    php中的内存划分
    workerman stop失败
    Java中的内存划分
    php和java语法区别
    Docker:Swarm + Stack 一站式部署容器集群
    docker 配置私有仓库
  • 原文地址:https://www.cnblogs.com/PinkRabbit/p/10182061.html
Copyright © 2020-2023  润新知