• 手掌手指分割算法(源码)


    开发环境

    开发环境

    • 64 bits Windows OS (Win8.1)
    • VS2013
    • OpenCV 2.4.9

    功能原理

    算法要求

    完成将Camera拍摄的手掌图片中分割出每个手指用于指纹识别

    算法流程

    核心代码

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    #ifdef TIME_RUN_COST
    double duration = static_cast<double>(cv::getTickCount());//time
    #endif
    cout << "filename=" << filename <<endl;
    Mat src = imread(filename, CV_LOAD_IMAGE_COLOR);
    if (src.empty())
    {
    cout << "imread error!!!";
    getchar();
    return -1;
    }
    #ifdef BOB_DBG_COM
    memset(out_filename, 0, sizeof(out_filename) / sizeof(char));
    sprintf(out_filename, "%s-%s.jpg",out_name,"0-0src");
    imwrite(out_filename, src);
    #endif // BOB_DBG_COM
     
    #if 0
    int scaleSize = 4;
    resize(src, src, Size(src.cols / scaleSize, src.rows / scaleSize), 0, 0, CV_INTER_AREA);
    memset(out_filename, 0, sizeof(out_filename) / sizeof(char));
    sprintf(out_filename, "%s-%s.jpg", out_name, "0-0src");
    imwrite(out_filename, src);
    #endif
     
    #if 1
    cout << "cut..." << endl;
    int width = src.cols;
    int height = src.rows;
    float scale = 0.8;
    cout << "width=" << width << ",height=" << height << endl;
    Rect rect(0, 0, width, height*scale);
    Mat imgCut;
    imgCut = src(rect).clone();
    #endif
    //Mat imgCut = src;
     
    cout << "filter..." << endl;
    // filter2D(imgCut, imgCut, -1, kernel);
    GaussianBlur(imgCut, imgCut, Size(5, 5), 0, 0);
    // blur(imgCut, imgCut, Size(5, 5));
     
    #if 0
    cout << "EqualizeHist..." << endl;
    Mat matOutEqualizeHist = Mat(imgCut.size(), CV_8UC3);
    //IplImage* pImgOutEqualizeHist = cvCreateImage(cvSize(cameraFrame.cols, cameraFrame.rows), IPL_DEPTH_8U, 3);
    IplImage pImgInEqualizeHist = (IplImage)(imgCut); // Mat-> IplImage
    IplImage* pImgOutEqualizeHist = EqualizeHistColorImage(&pImgInEqualizeHist);
    matOutEqualizeHist = pImgOutEqualizeHist; //IplImage -> Mat
    #endif
    // out
    Mat imgSrc = Mat(imgCut.size(), CV_8UC1);
    imgCut.copyTo(imgSrc);
     
    Mat imgContour = Mat(imgSrc.size(), CV_8UC1);
    #ifdef FINGER_EXTRACT_AT_NIGHT
    cout << "Nigth,Threshold..." << endl;
    Mat imgTmp;// = Mat(imgCut.size(), CV_8UC1);
    cvtColor(imgSrc, imgTmp, CV_RGB2GRAY);
    cvThresholdOtsu(&((IplImage)imgTmp), &((IplImage)imgTmp));
    imgTmp.copyTo(imgContour);
    #else
     
    cout << "Day,Skin..." << endl;
    Mat imgSkin2 = Mat(imgSrc.size(), CV_8UC1);
    IplImage* pImgSkin2 = cvCreateImage(cvSize(imgSrc.cols, imgSrc.rows), IPL_DEPTH_8U, 1);
    IplImage pImg2 = (IplImage)(imgSrc); // Mat-> IplImage
    cvSkinOtsu(&pImg2, pImgSkin2);
    imgSkin2 = pImgSkin2; //IplImage -> Mat
     
    //Mat imgSkin = Mat(imgSrc.size(), CV_8UC1);
    imgSkin2.copyTo(imgContour);
    #endif
     
    /////////////////////// Contours
    cout << "Find Contours..." << endl;
    vector<vector<cv::Point> > contours;
    vector<Vec4i> hierarchy;
    findContours(imgContour, contours, hierarchy,
    CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0));
     
    sort(contours.begin(), contours.end(), compareContourAreas);
     
    int contours_num = contours.size();
    cout << "contours_num=" << contours_num << endl;
    #if 0
    vector<vector<Point>>::const_iterator itContours = contours.begin();
    //for (int i = 0; i < contours.size(); i++)
    for (; itContours != contours.end(); ++itContours)
    {
    cout << "Size: " << itContours->size() << endl;//每个轮廓包含的点数
    }
    #endif
     
    #if 1 //usd
    // Eliminate too short or too long contours
    int cmin = 100; // minimum contour length
    //int cmax= 1000; // maximum contour length
    vector<vector<Point>>::const_iterator itc = contours.begin();
    while (itc != contours.end())
    {
    //if (itc->size() < cmin || itc->size() > cmax)
    if (itc->size() < cmin) {
    itc = contours.erase(itc);
    }
    else
    ++itc;
    }
    contours_num = contours.size();
    cout << endl << "contours_num after Eliminate=" << contours_num << endl;
    #endif
     
    // extract the contour img
    cout << "Extract Contours..." << endl;
    if (contours_num >= 4)
    {
    Mat img1, img2, img3, img4;
    std::vector<cv::Point> biggest1Contour = contours[contours_num - 1];
    std::vector<cv::Point> biggest2Contour = contours[contours_num - 2];
    std::vector<cv::Point> biggest3Contour = contours[contours_num - 3];
    std::vector<cv::Point> biggest4Contour = contours[contours_num - 4];
    std::vector<cv::Point> smallestContour = contours[0];
    extractFingerImg2(contours, imgSrc, img1, contours_num, 1);
    extractFingerImg2(contours, imgSrc, img2, contours_num, 2);
    extractFingerImg2(contours, imgSrc, img3, contours_num, 3);
    extractFingerImg2(contours, imgSrc, img4, contours_num, 4);
    }
    else if (contours_num == 3)
    {
    Mat img1, img2, img3;
    std::vector<cv::Point> biggest1Contour = contours[contours_num - 1];
    std::vector<cv::Point> biggest2Contour = contours[contours_num - 2];
    std::vector<cv::Point> biggest3Contour = contours[contours_num - 3];
    std::vector<cv::Point> smallestContour = contours[0];
    extractFingerImg2(contours, imgSrc, img1, contours_num, 1);
    extractFingerImg2(contours, imgSrc, img2, contours_num, 2);
    extractFingerImg2(contours, imgSrc, img3, contours_num, 3);
    }
    else if (contours_num == 2)
    {
    Mat img1, img2;
    std::vector<cv::Point> biggest1Contour = contours[contours_num - 1];
    std::vector<cv::Point> biggest2Contour = contours[contours_num - 2];
    std::vector<cv::Point> smallestContour = contours[0];
    extractFingerImg2(contours, imgSrc, img1, contours_num, 1);
    extractFingerImg2(contours, imgSrc, img2, contours_num, 2);
    }
    else if (contours_num == 1)
    {
    Mat img1;
    std::vector<cv::Point> biggest1Contour = contours[contours_num - 1];
    std::vector<cv::Point> smallestContour = contours[0];
    extractFingerImg2(contours, imgSrc, img1, contours_num, 1);
    }
    else
    {
    cout << "error" << endl;
    }
    #ifdef TIME_RUN_COST
    duration = static_cast<double>(cv::getTickCount()) - duration;
    duration /= cv::getTickFrequency(); // the elapsed time in ms
    cout << "time cost=" << duration << "s"<<endl;
    #endif
    #ifdef BOB_DBG_COM
    memset(out_filename, 0, sizeof(out_filename) / sizeof(char));
    sprintf(out_filename, "%s-%s.jpg", out_name, "4-imgContoursInSrc");
    imwrite(out_filename, imgSrc);
    //imwrite("4-imgContoursInSrc.jpg", imgSrc);
    #endif // BOB_DBG_COM

    算法效果

    白天复杂场景

    晚上场景

    批量测试场景

     

    转至:http://skyseraph.com/2014/07/24/CV/%E6%89%8B%E6%8E%8C%E6%89%8B%E6%8C%87%E5%88%86%E5%89%B2%E7%AE%97%E6%B3%95/

  • 相关阅读:
    不常用函数总结
    高效update方案
    一次http完整的请求tcp报文分析
    类的初始化以及创建对象后的初始化
    [置顶] 编译背后的秘密
    html object元素
    JQuery初识
    Java多线程yield
    智能电视TV开发---直播视频客户端结构设计和实现
    以Android环境为例的多线程学习笔记(二)-----------------锁和条件机制
  • 原文地址:https://www.cnblogs.com/Ph-one/p/7364976.html
Copyright © 2020-2023  润新知