最近在实验室做行人检测的项目,希望最后可以做到硬件上面去,所以挑选了yolov3的tiny版本。在实验室专有行人数据集下训练,检测效果还不错,在1080ti上推断速度达到了30fps, 这里和大家一起撸一下yolov3-tiny的网络结构:
相比于yolov3, tiny版本将网络压缩了许多,没有使用res层(残差层),只使用了两个不同尺度的yolo输出层,但总体思路还是可以借鉴yolov3的。这里首先给大家安利一款可视化网络模型的软件:Netron,目前的Netron支持主流各种框架的模型结构可视化工作,这里给出github链接: https://github.com/lutzroeder/Netron 支持windows,Linux,mac系统 。
本人的网络结构图也是照着Netron的结果绘制出来的,但是由于本人是检测单类,所以对网络参数略有改动,并且输入图像使用的是832*832大小,使用visio绘制的模型图如下:
这样大家可以结合darknet里面的yolov3-tiny.cfg文件,对照着模型图进行分析~~~
如果有什么不对的地方,欢迎拍砖!