• [LINUX-01]对比LINUX和CORTEX-M启动流程


    1 CORTEX-M

    1.1 boot程序

    以stm32为例,添加在线升级boot程序,rom地址:

    LR_IROM1 0x08000000 0x00004000  {    ; load region size_region
      ER_IROM1 0x08000000 0x00004000  {  ; load address = execution address
       *.o (RESET, +First)
       *(InRoot$$Sections)
       .ANY (+RO)
      }
      RW_IRAM1 0x20000000 0x00020000  {  ; RW data
       .ANY (+RW +ZI)
      }
    }

    boot引导应用程序:

    #define APPLICATION_ADDRESS   (uint32_t)0x08004000
    
                
    JumpAddress = *(__IO uint32_t*) (APPLICATION_ADDRESS + 4);
          /* Jump to user application */
          Jump_To_Application = (pFunction) JumpAddress;
          /* Initialize user application's Stack Pointer */
          __set_MSP(*(__IO uint32_t*) APPLICATION_ADDRESS);
          Jump_To_Application();

     1.2 应用程序

    rom地址 

    LR_IROM1 0x08004000 0x0001c000  {    ; load region size_region
      ER_IROM1 0x08004000 0x00300000  {  ; load address = execution address
       *.o (RESET, +First)
       *(InRoot$$Sections)
       .ANY (+RO)
      }
      RW_IRAM1 0x20000000 0x00020000  {  ; RW data
       .ANY (+RW +ZI)
      }
    }

    启动汇编文件startup***.s中

    Stack_Size      EQU     0x00000400  
    ;Stack_Size      EQU     0x00001000
        ,,,
    Reset_Handler   PROC
                    EXPORT  Reset_Handler                     [WEAK]
                    IMPORT  SystemInit
                    IMPORT  __main

    2 对于LINUX的引导和启动过程

    2.1 uboot

    mian_loop中有

    #define CONFIG_BOOTDELAY 3  //设置启动延时时间
    
    //如果延时大于等于零,并且没有在延时过程中接收到按键,则引导内核
    
    if (bootdelay >= 0 && s && !abortboot (bootdelay)) { //
    
    # ifdef CONFIG_AUTOBOOT_KEYED
    
          intprev = disable_ctrlc(1);/* disable Control C checking */
    
    # endif   //状态设置
    
     
    
    # ifndef CFG_HUSH_PARSER
    
            {
    
                 printf("Booting Linux ...
    ");       //启动 linux   
    
             run_command (s, 0);  //运行引导内核的命令,s=getenv("bootcmd")           
    
            }

    加载linux内核时将使用变量“bootcmd”和 “bootargs”,

    变量“bootcmd”和 “bootargs”的值可以在在加载linux内核前,

    uboot的命令控制台中进行修改

     bootcmd=nand read.jffs2 0x30007FC0 kernel; bootm 0x30007FC0

    第一条命令  从flash上读出内核   kernel是一个分区标志

    第二条命令  启动命令指示了启动地址

    bootargs是其它参数信息, run_command (getenv ("bootcmd"), flag)

    bootcmd中的bootm,即boot application image from memory

    参数形式:"bootm addr",当addr省略的时候bootm加载默认的配置宏

    #define CONFIG_SYS_LOAD_ADDR  0x30008000  /* default load address */

    2.2 linux内核态

    查找标签__mmap_switched所在位置:/linux/arch/arm/kernel/head-common.S

    __mmap_switched:
    /*
    * The following fragment of code is executed with the MMU on in MMU mode,
    * and uses absolute addresses; this is not position independent.
    *
    * r0 = cp#15 control register
    * r1 = machine ID
    * r2 = atags/dtb pointer
    * r9 = processor ID
    */
    //保存设备信息、设备树及启动参数存储地址
    ,,
    b    start_kernel

    函数所在位置:/linux/init/Main.c,start_kernel涉及大量初始化工作,只例举重要的初始化工作。

    asmlinkage void __init start_kernel(void)
    {
    …… //类型判断
    smp_setup_processor_id(); //smp相关,返回启动CPU号
    ……
    local_irq_disable(); //关闭当前CPU中断
    early_boot_irqs_disabled = true;
    /*
    * Interrupts are still disabled. Do necessary setups, then
    * enable them
    */
    boot_cpu_init();
    page_address_init(); //初始化页地址
    pr_notice("%s", linux_banner); //显示内核版本信息
    setup_arch(&command_line);
    mm_init_owner(&init_mm, &init_task);
    mm_init_cpumask(&init_mm);
    setup_command_line(command_line);
    setup_nr_cpu_ids();
    setup_per_cpu_areas();
    smp_prepare_boot_cpu();    /* arch-specific boot-cpu hooks */
    
    build_all_zonelists(NULL, NULL);
    page_alloc_init(); //页内存申请初始化
    
    pr_notice("Kernel command line: %s
    ", boot_command_line); //打印内核启动命令行参数
    parse_early_param();
    parse_args("Booting kernel", static_command_line, __start___param,
    __stop___param - __start___param,
    -1, -1, &unknown_bootoption);
    
    ……
    /*
    * Set up the scheduler prior starting any interrupts (such as the
    * timer interrupt). Full topology setup happens at smp_init()
    * time - but meanwhile we still have a functioning scheduler.
    */
    sched_init(); //进程调度器初始化
    /*
    * Disable preemption - early bootup scheduling is extremely
    * fragile until we cpu_idle() for the first time.
    */
    preempt_disable(); //禁止内核抢占
    if (WARN(!irqs_disabled(), "Interrupts were enabled *very* early, fixing it
    "))
    local_irq_disable(); //检查关闭CPU中断
    
    
    /*大量初始化内容 见名知意*/
    idr_init_cache();
    rcu_init();
    tick_nohz_init();
    context_tracking_init();
    radix_tree_init();
    /* init some links before init_ISA_irqs() */
    early_irq_init();
    init_IRQ();
    tick_init();
    init_timers();
    hrtimers_init();
    softirq_init();
    timekeeping_init();
    time_init();
    sched_clock_postinit();
    perf_event_init();
    profile_init();
    call_function_init();
    WARN(!irqs_disabled(), "Interrupts were enabled early
    ");
    early_boot_irqs_disabled = false;
    local_irq_enable(); //本地中断可以使用了
    
    kmem_cache_init_late();
    
    /*
    * HACK ALERT! This is early. We're enabling the console before
    * we've done PCI setups etc, and console_init() must be aware of
    * this. But we do want output early, in case something goes wrong.
    */
    console_init(); //初始化控制台,可以使用printk了
    if (panic_later)
    panic("Too many boot %s vars at `%s'", panic_later,
    panic_param);
    
    lockdep_info();
    
    /*
    * Need to run this when irqs are enabled, because it wants
    * to self-test [hard/soft]-irqs on/off lock inversion bugs
    * too:
    */
    locking_selftest();
    
    #ifdef CONFIG_BLK_DEV_INITRD
    if (initrd_start && !initrd_below_start_ok &&
    page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) {
    pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.
    ",
    page_to_pfn(virt_to_page((void *)initrd_start)),
    min_low_pfn);
    initrd_start = 0;
    }
    #endif
    page_cgroup_init();
    debug_objects_mem_init();
    kmemleak_init();
    setup_per_cpu_pageset();
    numa_policy_init();
    if (late_time_init)
    late_time_init();
    sched_clock_init();
    calibrate_delay();
    pidmap_init();
    anon_vma_init();
    acpi_early_init();
    #ifdef CONFIG_X86
    if (efi_enabled(EFI_RUNTIME_SERVICES))
    efi_enter_virtual_mode();
    #endif
    #ifdef CONFIG_X86_ESPFIX64
    /* Should be run before the first non-init thread is created */
    init_espfix_bsp();
    #endif
    thread_info_cache_init();
    cred_init();
    fork_init(totalram_pages); //初始化fork
    proc_caches_init();
    buffer_init();
    key_init();
    security_init();
    dbg_late_init();
    vfs_caches_init(totalram_pages); //虚拟文件系统初始化
    signals_init();
    /* rootfs populating might need page-writeback */
    page_writeback_init();
    #ifdef CONFIG_PROC_FS
    proc_root_init();
    #endif
    cgroup_init();
    cpuset_init();
    taskstats_init_early();
    delayacct_init();
    
    check_bugs();
    
    sfi_init_late();
    
    if (efi_enabled(EFI_RUNTIME_SERVICES)) {
    efi_late_init();
    efi_free_boot_services();
    }
    
    ftrace_init();
    
    /* Do the rest non-__init'ed, we're now alive */
    rest_init();
    }
    函数最后调用rest_init()函数
    
    /*最重要使命:创建kernel_init进程,并进行后续初始化*/
    static noinline void __init_refok rest_init(void)
    {
    int pid;
    
    rcu_scheduler_starting();
    /*
    * We need to spawn init first so that it obtains pid 1, however
    * the init task will end up wanting to create kthreads, which, if
    * we schedule it before we create kthreadd, will OOPS.
    */
    
    kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND); //创建kernel_init进程
    
    numa_default_policy();
    pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
    rcu_read_lock();
    kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
    rcu_read_unlock();
    complete(&kthreadd_done);
    
    /*
    * The boot idle thread must execute schedule()
    * at least once to get things moving:
    */
    init_idle_bootup_task(current);
    schedule_preempt_disabled();
    /* Call into cpu_idle with preempt disabled */
    //cpu_idle就是在系统闲置时用来降低电力的使用和减少热的产生的空转函数,函数至此不再返回,其余工作从kernel_init进程处发起
    cpu_startup_entry(CPUHP_ONLINE);
    }
    kernel_init函数将完成设备驱动程序的初始化,并调用init_post函数启动用户进程
    
    部分书籍介绍的内核启动流程基于经典的2.6版本,kernel_init函数还会调用init_post函数专门负责_init进程的启动,现版本已经被整合到了一起。
    
    static int __ref kernel_init(void *unused)
    {
    int ret;
    
    kernel_init_freeable(); //该函数中完成smp开启 驱动初始化 共享内存初始化等工作
    /* need to finish all async __init code before freeing the memory */
    async_synchronize_full();
    free_initmem(); //初始化尾声,清除内存无用数据
    mark_rodata_ro();
    system_state = SYSTEM_RUNNING;
    numa_default_policy();
    
    flush_delayed_fput();
    
    if (ramdisk_execute_command) {
    ret = run_init_process(ramdisk_execute_command);
    if (!ret)
    return 0;
    pr_err("Failed to execute %s (error %d)
    ",
    ramdisk_execute_command, ret);
    }
    
    /*
    * We try each of these until one succeeds.
    *
    * The Bourne shell can be used instead of init if we are
    * trying to recover a really broken machine.
    *寻找init函数,创建一号进程_init (第一个用户空间进程)*/
    if (execute_command) {
    ret = run_init_process(execute_command);
    if (!ret)
    return 0;
    pr_err("Failed to execute %s (error %d). Attempting defaults...
    ",
    execute_command, ret);
    }
    if (!try_to_run_init_process("/sbin/init") ||
    !try_to_run_init_process("/etc/init") ||
    !try_to_run_init_process("/bin/init") ||
    !try_to_run_init_process("/bin/sh"))
    return 0;
    
    panic("No working init found. Try passing init= option to kernel. "
    "See Linux Documentation/init.txt for guidance.");
    }
    static int __ref kernel_init(void *unused)
    {
    int ret;
    
    kernel_init_freeable(); //该函数中完成smp开启 驱动初始化 共享内存初始化等工作
    /* need to finish all async __init code before freeing the memory */
    async_synchronize_full();
    free_initmem(); //初始化尾声,清除内存无用数据
    mark_rodata_ro();
    system_state = SYSTEM_RUNNING;
    numa_default_policy();
    
    flush_delayed_fput();
    
    if (ramdisk_execute_command) {
    ret = run_init_process(ramdisk_execute_command);
    if (!ret)
    return 0;
    pr_err("Failed to execute %s (error %d)
    ",
    ramdisk_execute_command, ret);
    }
    
    /*
    * We try each of these until one succeeds.
    *
    * The Bourne shell can be used instead of init if we are
    * trying to recover a really broken machine.
    *寻找init函数,创建一号进程_init (第一个用户空间进程)*/
    if (execute_command) {
    ret = run_init_process(execute_command);
    if (!ret)
    return 0;
    pr_err("Failed to execute %s (error %d). Attempting defaults...
    ",
    execute_command, ret);
    }
    if (!try_to_run_init_process("/sbin/init") ||
    !try_to_run_init_process("/etc/init") ||
    !try_to_run_init_process("/bin/init") ||
    !try_to_run_init_process("/bin/sh"))
    return 0;
    
    panic("No working init found. Try passing init= option to kernel. "
    "See Linux Documentation/init.txt for guidance.");
    }
     

    到此,内核初始化已经接近尾声,所有的初始化函数都已经调用,因此free_initmem函数可以舍弃内存的__init_begin至__init_end之间的数据。

    当内核被引导并进行初始化后,内核启动了自己的第一个用户空间应用程序_init,这是调用的第一个使用标准C库编译的程序,其进程编号时钟为1.

    _init负责出发其他必须的进程,以使系统进入整体可用的状态。

    以下为内核启动流程图:

     

    图片来源:https://blog.csdn.net/perfect1t/article/details/81741531

    参考:https://blog.csdn.net/perfect1t/article/details/81741531

    ---

    https://blog.csdn.net/perfect1t/article/details/81741531

  • 相关阅读:
    Shell 06 awk
    Shell 05 Sed
    Shell 04 字符串处理、正则表达式
    Shell 03 for while case 函数 中断及退出
    Shell 02 数据运算/条件测试
    Shell 01 shell概述
    六十.完全分布式 、 节点管理 、 NFS网关
    五十九.大数据、Hadoop 、 Hadoop安装与配置 、 HDFS
    五十八.Kibana使用 、 Logstash配置扩展插件
    bzoj4872
  • 原文地址:https://www.cnblogs.com/Ph-one/p/12700220.html
Copyright © 2020-2023  润新知