• Almost Sorted Array


    Problem Description
    We are all familiar with sorting algorithms: quick sort, merge sort, heap sort, insertion sort, selection sort, bubble sort, etc. But sometimes it is an overkill to use these algorithms for an almost sorted array.

    We say an array is sorted if its elements are in non-decreasing order or non-increasing order. We say an array is almost sorted if we can remove exactly one element from it, and the remaining array is sorted. Now you are given an array a1,a2,…,an, is it almost sorted?
     

    Input
    The first line contains an integer T indicating the total number of test cases. Each test case starts with an integer n in one line, then one line with n integers a1,a2,…,an.

    1≤T≤2000
    2≤n≤105
    1≤ai≤105
    There are at most 20 test cases with n>1000.
     

    Output
    For each test case, please output "`YES`" if it is almost sorted. Otherwise, output "`NO`" (both without quotes).
     

    Sample Input

    3
    3
    2 1 7
    3
    3 2 1
    5
    3 1 4 1 5

     

    Sample Output

    YES
    YES
    NO

    题意:给定一个序列 问:去掉一个元素能否成为有序序列。

    #include<cstdio>
    #include<cstring>
    #include<stack>
    #include<vector>
    #include<queue>
    #include<cmath>
    #include<cstdlib>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int oo = 1e9+7;
    const int maxn = 1e6+7;
    typedef long long LL;
    int ac[maxn];
    void up(int n, int &flag, int &cnt)
    {
        int i, p=1, index=1;///index标记不符合题意的点的下标
        flag = cnt = 0;///cnt标记不符合题意的点的个数
        for(i = 2; i <= n; i++)
        {
            if(ac[i] >= ac[i-1]) p++;
            else
            {
                cnt++;
                index = i;
            }
        }
        if(p == n) flag = 1;///原序列符合要求
        if(cnt == 1)///只存在一个不符合题意的点
        {
            if(index == n || index==2 || ac[index-1] <= ac[index+1] || ac[index-2] <= ac[index])
                flag = 1;
        }
        if(cnt == 0) flag = 1;
    }
    void down(int n, int &flag, int &cnt)
    {
        int i, p=1, index=1;///index标记不符合题意的点的下标
        flag = cnt = 0;///cnt标记不符合题意的点的个数
        for(i = 2; i <= n; i++)
        {
            if(ac[i] <= ac[i-1]) p++;
            else
            {
                cnt++;
                index = i;
            }
        }
        if(p == n) flag = 1;///原序列符合要求
        if(cnt == 1)///只存在一个不符合题意的点
        {
            if(index == n || index==2 || ac[index-1] >= ac[index+1] || ac[index-2] >= ac[index])
                flag = 1;
        }
        if(cnt == 0) flag = 1;
    }
    int main()
    {
        int T, i, n, flag, cnt;
        scanf("%d", &T);
        while(T--)
        {
            scanf("%d", &n);
            for(i = 1; i <= n; i++)
                scanf("%d", &ac[i]);
            flag = cnt = 0;
            up(n, flag, cnt);///上升序列
            if(flag == 0)
            down(n, flag, cnt);///下降序列
            if(flag) printf("YES
    ");
            else printf("NO
    ");
        }
        return 0;
    }
    
  • 相关阅读:
    第02组 Beta冲刺(4/4)
    第02组 Beta冲刺(2/4)
    第02组 Beta冲刺(3/4)
    第02组 Beta冲刺(1/4)
    第02组 Alpha事后诸葛亮
    第02组 Alpha冲刺(4/4)
    第02组 Alpha冲刺(3/4)
    第02组 Alpha冲刺(2/4)
    第02组 Alpha冲刺(1/4)
    第02组 Beta版本演示
  • 原文地址:https://www.cnblogs.com/PersistFaith/p/4928050.html
Copyright © 2020-2023  润新知