• poj 3281


    Language:
    Dining
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 11719   Accepted: 5387

    Description

    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

    Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

    Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

    Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

    Input

    Line 1: Three space-separated integers: NF, and D 
    Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow iwill drink.

    Output

    Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

    Sample Input

    4 3 3
    2 2 1 2 3 1
    2 2 2 3 1 2
    2 2 1 3 1 2
    2 1 1 3 3

    Sample Output

    3

    Hint

    One way to satisfy three cows is: 
    Cow 1: no meal 
    Cow 2: Food #2, Drink #2 
    Cow 3: Food #1, Drink #1 
    Cow 4: Food #3, Drink #3 
    The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

    Source

    #include <cstdio>
    #include <queue>
    #include <cstring>
    #include <cstdlib>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int N = 88888*4;
    const int oo = 0x3f3f3f3f;
    int head[N], start, End, cnt, vis[N];
    struct da
    {
        int v, flow, next;
    } as[N];
    void add(int u, int v, int flow)
    {
        as[cnt].v = v;
        as[cnt].flow = flow;
        as[cnt].next = head[u];
        head[u] = cnt++;
    }
    int bfs()
    {
        queue<int >Q;
        memset(vis, 0, sizeof(vis));
        vis[start] = 1;
        Q.push(start);
        while(!Q.empty())
        {
           int u = Q.front();
           Q.pop();
           if(u == End) return 1;
           for(int j = head[u]; j != -1; j = as[j].next)
           {
               int v = as[j].v;
               if(!vis[v] && as[j].flow)
               {
                   vis[v] = vis[u] + 1;
                   Q.push(v);
               }
           }
        }
        return 0;
    }
    int dfs(int u, int Maxflow)
    {
        int v, flow, uflow=0;
        if(u == End) return Maxflow;
        for(int j = head[u]; j != -1; j = as[j].next)
        {
            v = as[j].v;
            if(vis[v] == vis[u]+1 && as[j].flow)
            {
                flow = min(as[j].flow, Maxflow-uflow);
                flow = dfs(v, flow);
                as[j].flow -= flow;
                as[j^1].flow += flow;
                uflow += flow;
                if(uflow == Maxflow)break;
            }
        }
        if(uflow == 0)vis[u] = 0;
        return uflow;
    }
    int dinic()
    {
        int ans = 0;
        while(bfs())
            ans += dfs(start, oo);
        return ans;
    }
    int main()
    {
        int N, F, D, i, j, num, ans, fi, di;
        while(~scanf("%d %d %d", &N, &F, &D))
        {
            memset(head, -1, sizeof(head));
            cnt = 0;
            start = 0;
            End = F+D+2*N+2;
            for(i = 1; i <= N; i++)
            {
                scanf("%d %d", &fi, &di);
                for(j = 1; j <= fi; j++)
                {
                    scanf("%d", &num);
                    add(num, F+i, 1);
                    add(F+i, num, 0);
                }
                for(j = 1; j <= di; j++)
                {
                    scanf("%d", &num);
                    add(F+i+N, F+2*N+num, 1);
                    add(F+2*N+num, F+N+i, 0);
                }
                add(F+i, F+N+i, 1);
                add(F+N+i, F+i, 0);
            }
            for(i = 1; i <= F; i++)
            {
                add(start, i, 1);
                add(i, start, 0);
            }
            for(i = 1; i <= D; i++)
            {
                add(2*N+F+i, End, 1);
                add(End, 2*N+F+i, 0);
            }
            ans = dinic();
            printf("%d
    ", ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    数据库-第十章 数据库恢复技术-10.5 恢复策略
    数据库-第十章 数据库恢复技术-10.4 恢复的实现技术
    数据库-第十章 数据库恢复技术-10.3 故障的种类
    数据库-第十章 数据库恢复技术-10.2 数据库恢复概述
    数据库-第十章 数据库恢复技术-10.1 事务的基本概念
    数据库-第九章 关系查询处理和查询优化-9.4 物理优化
    数据库-第九章 关系查询处理和查询优化-9.3 代数优化
    数据库-第九章 关系查询处理和查询优化-9.2 关系数据库系统的查询优化
    数据库-第九章 关系查询处理和查询优化-9.1 关系数据库系统的查询处理
    编译原理-第五章 语法制导翻译-5.2 语法制导翻译的应用
  • 原文地址:https://www.cnblogs.com/PersistFaith/p/4743469.html
Copyright © 2020-2023  润新知