• HDU6216


    A Cubic number and A Cubic Number

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 313    Accepted Submission(s): 184


    Problem Description

    A cubic number is the result of using a whole number in a multiplication three times. For example, 3×3×3=27 so 27 is a cubic number. The first few cubic numbers are 1,8,27,64 and 125. Given an prime number p. Check that if p is a difference of two cubic numbers.
     

    Input

    The first of input contains an integer T (1T100) which is the total number of test cases.
    For each test case, a line contains a prime number p (2p1012).
     

    Output

    For each test case, output 'YES' if given p is a difference of two cubic numbers, or 'NO' if not.
     

    Sample Input

    10 2 3 5 7 11 13 17 19 23 29
     

    Sample Output

    NO NO NO YES NO NO NO YES NO NO
     

    Source

     
    a^3-b^3 == p,p为质数,所以a-b=1
     1 //2017-09-17
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <iostream>
     5 #include <algorithm>
     6 #define ll long long
     7 
     8 using namespace std;
     9 
    10 const int N = 600000;
    11 
    12 ll cubic[N+100];
    13 ll diff[N+100];
    14 
    15 bool check(ll p){
    16     int pos = lower_bound(diff+1, diff+N, p) - diff;
    17     if(diff[pos] == p)
    18       return true;
    19     return false;
    20 }
    21 
    22 int main()
    23 {
    24     int T;
    25     scanf("%d", &T);
    26     ll p;
    27     for(ll i = 1; i <= N; i++)
    28         cubic[i] = i*i*i;
    29     for(int i = 1; i <= N; i++)
    30         diff[i] = cubic[i+1]-cubic[i];
    31     while(T--){
    32         scanf("%lld", &p);
    33         if(check(p))
    34           printf("YES
    ");
    35         else printf("NO
    ");
    36     }
    37 
    38     return 0;
    39 }
  • 相关阅读:
    postgresql删除活动链接的数据库
    第四篇 函数
    Jmeter响应中文乱码解决办法
    第三篇 条件控制和循环
    第二篇 Python运算符
    npm更换为镜像
    第一篇 Python的数据类型
    newman的常用命令使用总结
    windows下安装newman
    同态包络提取
  • 原文地址:https://www.cnblogs.com/Penn000/p/7542646.html
Copyright © 2020-2023  润新知