number number number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 118 Accepted Submission(s): 79
Problem Description
We define a sequence F:
⋅ F0=0,F1=1;
⋅ Fn=Fn−1+Fn−2 (n≥2).
Give you an integer k, if a positive number n can be expressed by
n=Fa1+Fa2+...+Fak where 0≤a1≤a2≤⋯≤ak, this positive number is mjf−good. Otherwise, this positive number is mjf−bad.
Now, give you an integer k, you task is to find the minimal positive mjf−bad number.
The answer may be too large. Please print the answer modulo 998244353.
⋅ F0=0,F1=1;
⋅ Fn=Fn−1+Fn−2 (n≥2).
Give you an integer k, if a positive number n can be expressed by
n=Fa1+Fa2+...+Fak where 0≤a1≤a2≤⋯≤ak, this positive number is mjf−good. Otherwise, this positive number is mjf−bad.
Now, give you an integer k, you task is to find the minimal positive mjf−bad number.
The answer may be too large. Please print the answer modulo 998244353.
Input
There are about 500 test cases, end up with EOF.
Each test case includes an integer k which is described above. (1≤k≤109)
Each test case includes an integer k which is described above. (1≤k≤109)
Output
For each case, output the minimal mjf−bad number mod 998244353.
Sample Input
1
Sample Output
4
Source
ans = F(2*n+1)-1
1 //2017-09-10 2 #include <cstdio> 3 #include <cstring> 4 #include <iostream> 5 #include <algorithm> 6 #define LL long long 7 #define MAXN 100 8 9 using namespace std; 10 11 const int MOD = 998244353; 12 13 struct Matrix 14 { 15 LL a[MAXN][MAXN]; 16 int r, c; 17 }; 18 19 Matrix ori, res; 20 21 void init() 22 { 23 memset(res.a, 0, sizeof(res.a)); 24 res.r = 2; res.c = 2; 25 for(int i = 1; i <= 2; i++) 26 res.a[i][i] = 1; 27 ori.r = 2; ori.c = 2; 28 ori.a[1][1] = ori.a[1][2] = ori.a[2][1] = 1; 29 ori.a[2][2] = 0; 30 } 31 32 Matrix multi(Matrix x, Matrix y) 33 { 34 Matrix z; 35 memset(z.a, 0, sizeof(z.a)); 36 z.r = x.r, z.c = y.c; 37 for(int i = 1; i <= x.r; i++) 38 { 39 for(int k = 1; k <= x.c; k++) 40 { 41 if(x.a[i][k] == 0) continue; 42 for(int j = 1; j<= y.c; j++) 43 z.a[i][j] = (z.a[i][j] + (x.a[i][k] * y.a[k][j]) % MOD) % MOD; 44 } 45 } 46 return z; 47 } 48 void Matrix_mod(int n) 49 { 50 while(n) 51 { 52 if(n & 1) 53 res = multi(ori, res); 54 ori = multi(ori, ori); 55 n >>= 1; 56 } 57 printf("%lld ", res.a[1][2]-1 % MOD); 58 } 59 60 int main() 61 { 62 int k; 63 while(scanf("%d", &k) != EOF) 64 { 65 init(); 66 k++; 67 Matrix_mod(2*k+1); 68 } 69 return 0; 70 }