• HDU1054(KB10-H 最小顶点覆盖)


    Strategic Game

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 8503    Accepted Submission(s): 4093


    Problem Description

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

    Your program should find the minimum number of soldiers that Bob has to put for a given tree.

    The input file contains several data sets in text format. Each data set represents a tree with the following description:

    the number of nodes
    the description of each node in the following format
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
    or
    node_identifier:(0)

    The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

    For example for the tree: 

     

    the solution is one soldier ( at the node 1).

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:
     

    Sample Input

    4 0:(1) 1 1:(2) 2 3 2:(0) 3:(0) 5 3:(3) 1 4 2 1:(1) 0 2:(0) 0:(0) 4:(0)
     

    Sample Output

    1 2
     

    Source

     
    最小顶点覆盖,拆点将问题转化为二分图的最小顶点覆盖。
     
    定理:二分图最小顶点覆盖 == 最大匹配
     
      1 //2017-08-26
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <iostream>
      5 #include <algorithm>
      6 
      7 using namespace std;
      8 
      9 const int N = 5000;
     10 const int M = 1000000;
     11 int head[N], tot;
     12 struct Edge{
     13     int to, next;
     14 }edge[M];
     15 
     16 void init(){
     17     tot = 0;
     18     memset(head, -1, sizeof(head));
     19 }
     20 
     21 void add_edge(int u, int v){
     22     edge[tot].to = v;
     23     edge[tot].next = head[u];
     24     head[u] = tot++;
     25 
     26     edge[tot].to = u;
     27     edge[tot].next = head[v];
     28     head[v] = tot++;
     29 }
     30 
     31 int n;
     32 int matching[N];
     33 int check[N];
     34 
     35 bool dfs(int u){
     36     for(int i =  head[u]; i != -1; i = edge[i].next){
     37         int v = edge[i].to;
     38         if(!check[v]){//要求不在交替路
     39             check[v] = 1;//放入交替路
     40             if(matching[v] == -1 || dfs(matching[v])){
     41                 //如果是未匹配点,说明交替路为增广路,则交换路径,并返回成功
     42                 matching[u] = v;
     43                 matching[v] = u;
     44                 return true;
     45             }
     46         }
     47     }
     48     return false;//不存在增广路
     49 }
     50 
     51 //hungarian: 二分图最大匹配匈牙利算法
     52 //input: null
     53 //output: ans 最大匹配数
     54 int hungarian(){
     55     int ans = 0;
     56     memset(matching, -1, sizeof(matching));
     57     for(int u = 0; u < n; u++){
     58         if(matching[u] == -1){
     59             memset(check, 0, sizeof(check));
     60             if(dfs(u))
     61               ans++;
     62         }
     63     }
     64     return ans;
     65 }
     66 
     67 int main()
     68 {
     69     std::ios::sync_with_stdio(false);
     70     //freopen("inputH.txt", "r", stdin);
     71     string str;
     72     while(cin>>n){
     73         init();
     74         int u, k, v;
     75         for(int i = 0; i < n; i++){
     76             cin>>str;
     77             u = 0, k = 0;
     78             int ptr = 0;
     79             while(str[ptr] != ':'){
     80                 u *= 10;
     81                 u += str[ptr]-'0';
     82                 ptr++;
     83             }
     84             ptr+=2;
     85             while(str[ptr] != ')'){
     86                 k *= 10;
     87                 k += str[ptr]-'0';
     88                 ptr++;
     89             }
     90             for(int j = 0; j < k; j++){
     91                 cin>>v;
     92                 add_edge(u, n+v);
     93                 add_edge(v, n+u);
     94             }
     95         }
     96         cout<<hungarian()/2<<endl;
     97     }
     98 
     99     return 0;
    100 }
  • 相关阅读:
    曾经写过一个感觉比较复杂的业务,大家看看是否能直接SQL解决呢?
    二分查找算法的起步判定优化
    在一个项目中,哪些中间件、框架、或者设计模式真的帮你解决了某些困惑和代码重构问题,这些是可以记录博客的点
    md工具
    判断python socket服务端有没有关闭的方法
    oracle 12.2.0.3(19c) rpm 安装
    宜昌电信服务器拨号自动断开自动重新拨号
    ubuntu安装音视频相关的包
    ubuntu vlc rtsp拉流推流失败
    sed批量更改pkgconfig
  • 原文地址:https://www.cnblogs.com/Penn000/p/7434667.html
Copyright © 2020-2023  润新知