• HDU3416(KB11-O spfa+最大流)


    Marriage Match IV

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4381    Accepted Submission(s): 1310


    Problem Description

    Do not sincere non-interference。
    Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once. 


    So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
     

    Input

    The first line is an integer T indicating the case number.(1<=T<=65)
    For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.

    Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.

    At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
    There may be some blank line between each case.
     

    Output

    Output a line with a integer, means the chances starvae can get at most.
     

    Sample Input

    3 7 8 1 2 1 1 3 1 2 4 1 3 4 1 4 5 1 4 6 1 5 7 1 6 7 1 1 7 6 7 1 2 1 2 3 1 1 3 3 3 4 1 3 5 1 4 6 1 5 6 1 1 6 2 2 1 2 1 1 2 2 1 2
     

    Sample Output

    2 1 1
     

    Author

    starvae@HDU
     

     

    Source

     

    只有最短路上的边才加入网络,容量都为1,跑最大流

      1 //2017-08-25
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <iostream>
      5 #include <algorithm>
      6 #include <queue>
      7 
      8 using namespace std;
      9 
     10 const int N = 5010;
     11 const int M = 500000;
     12 const int INF = 0x3f3f3f3f;
     13 int head[N], tot;
     14 struct Edge{
     15     int next, to, w;
     16 }edge[M];
     17 
     18 void add_edge(int u, int v, int w){
     19     edge[tot].w = w;
     20     edge[tot].to = v;
     21     edge[tot].next = head[u];
     22     head[u] = tot++;
     23 }
     24 
     25 struct Dinic{
     26     int level[N], S, T;
     27     void init(){
     28         tot = 0;
     29         memset(head, -1, sizeof(head));
     30     }
     31     void set_s_t(int _S, int _T){
     32         S = _S;
     33         T = _T;
     34     }
     35     bool bfs(){
     36         queue<int> que;
     37         memset(level, -1, sizeof(level));
     38         level[S] = 0;
     39         que.push(S);
     40         while(!que.empty()){
     41             int u = que.front();
     42             que.pop();
     43             for(int i = head[u]; i != -1; i = edge[i].next){
     44                 int v = edge[i].to;
     45                 int w = edge[i].w;
     46                 if(level[v] == -1 && w > 0){
     47                     level[v] = level[u]+1;
     48                     que.push(v);
     49                 }
     50             }
     51         }
     52         return level[T] != -1;
     53     }
     54     int dfs(int u, int flow){
     55         if(u == T)return flow;
     56         int ans = 0, fw;
     57         for(int i = head[u]; i != -1; i = edge[i].next){
     58             int v = edge[i].to, w = edge[i].w;
     59             if(!w || level[v] != level[u]+1)
     60               continue;
     61             fw = dfs(v, min(flow-ans, w));
     62             ans += fw;
     63             edge[i].w -= fw;
     64             edge[i^1].w += fw;
     65             if(ans == flow)return ans;
     66         }
     67         if(ans == 0)level[u] = 0;
     68         return ans;
     69     }
     70     int maxflow(){
     71         int flow = 0;
     72         while(bfs())
     73           flow += dfs(S, INF);
     74         return flow;    
     75     }
     76 }dinic;
     77 
     78 //dis[0][u]表示从起点到u的最短距离,dis[1][u]表示从终点到u的最短距离,cnt[u]记录u入队次数,判负环用
     79 int dis[2][N], cnt[N];
     80 bool vis[N];
     81 bool spfa(int s, int n, int op){
     82     memset(vis, false, sizeof(vis));
     83     memset(dis[op], INF, sizeof(dis));
     84     memset(cnt, 0, sizeof(cnt));
     85     vis[s] = true;
     86     dis[op][s] = 0;
     87     cnt[s] = 1;
     88     queue<int> q;
     89     q.push(s);
     90     while(!q.empty()){
     91         int u = q.front();
     92         q.pop();
     93         vis[u] = false;
     94         for(int i = head[u]; i != -1; i = edge[i].next){
     95             int v = edge[i].to;
     96             int w = edge[i].w;
     97             if(dis[op][v] > dis[op][u] + w){
     98                 dis[op][v] = dis[op][u] + w;
     99                 if(!vis[v]){
    100                     vis[v] = true;
    101                     q.push(v);
    102                     if(++cnt[v] > n)return false;
    103                 }
    104             }
    105         }
    106     }
    107     return true;
    108 }
    109 
    110 struct Line{
    111     int u, v, w;
    112 }line[M];
    113 
    114 int main()
    115 {
    116     std::ios::sync_with_stdio(false);
    117     //freopen("inputO.txt", "r", stdin);
    118     int T, n, m, A, B;
    119     cin>>T;
    120     while(T--){
    121         cin>>n>>m;
    122         int u, v, w;
    123         for(int i = 0; i < m; i++)
    124           cin>>line[i].u>>line[i].v>>line[i].w;
    125         cin>>A>>B;
    126         dinic.init();
    127         for(int i = 0; i < m; i++)
    128           add_edge(line[i].u, line[i].v, line[i].w);
    129         spfa(A, n, 0);//求从起点开始到各个点的最短路
    130         dinic.init();
    131         for(int i = 0; i < m; i++)
    132           add_edge(line[i].v, line[i].u, line[i].w);
    133         spfa(B, n, 1);//求从终点开始到各个点的最短路
    134         dinic.init();
    135         dinic.set_s_t(A, B);
    136         for(int i = 0; i < m; i++){
    137             u = line[i].u;
    138             v = line[i].v;
    139             w = line[i].w;
    140             //只有最短路上的边才加入网络
    141             if(dis[0][u]+dis[1][v]+w == dis[0][B]){
    142                 add_edge(u, v, 1);
    143                 add_edge(v, u, 0);
    144             }
    145         }
    146         cout<<dinic.maxflow()<<endl;
    147     }
    148     return 0;
    149 }
  • 相关阅读:
    【从小白到专家】收官!Istio技术实践之九:路由控制与灰度发布
    Kube-OVN 1.2.0发布,携手社区成员打造高性能容器网络
    Kubernetes最佳实践之腾讯云TKE 集群组建
    5大最新云原生镜像构建工具全解析,3个来自Google,你了解几个?
    【从小白到专家】 Istio专题之七:30分钟讲透Istio访问与控制
    后疫情时期传统企业的云原生之路将走向何方?第二期(2019-2020)云原生实践调研报告发布!
    使用Spring Security控制会话
    Spring Security – security none, filters none, access permitAll
    No bean named 'springSecurityFilterChain' is defined
    Unable to locate Spring NamespaceHandler for XML schema namespace
  • 原文地址:https://www.cnblogs.com/Penn000/p/7428278.html
Copyright © 2020-2023  润新知