• HDU4289(KB11-I 最小割)


    Control

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 3577    Accepted Submission(s): 1503


    Problem Description

      You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD 1 from one city (the source) to another one (the destination). You know their date, source and destination, and they are using the highway network.
      The highway network consists of bidirectional highways, connecting two distinct city. A vehicle can only enter/exit the highway network at cities only.
      You may locate some SA (special agents) in some selected cities, so that when the terrorists enter a city under observation (that is, SA is in this city), they would be caught immediately.
      It is possible to locate SA in all cities, but since controlling a city with SA may cost your department a certain amount of money, which might vary from city to city, and your budget might not be able to bear the full cost of controlling all cities, you must identify a set of cities, that:
      * all traffic of the terrorists must pass at least one city of the set.
      * sum of cost of controlling all cities in the set is minimal.
      You may assume that it is always possible to get from source of the terrorists to their destination.
    ------------------------------------------------------------
    1 Weapon of Mass Destruction
     

    Input

      There are several test cases.
      The first line of a single test case contains two integer N and M ( 2 <= N <= 200; 1 <= M <= 20000), the number of cities and the number of highways. Cities are numbered from 1 to N.
      The second line contains two integer S,D ( 1 <= S,D <= N), the number of the source and the number of the destination.
      The following N lines contains costs. Of these lines the ith one contains exactly one integer, the cost of locating SA in the ith city to put it under observation. You may assume that the cost is positive and not exceeding 107.
      The followingM lines tells you about highway network. Each of these lines contains two integers A and B, indicating a bidirectional highway between A and B.
      Please process until EOF (End Of File).
     

    Output

      For each test case you should output exactly one line, containing one integer, the sum of cost of your selected set.
      See samples for detailed information.
     

    Sample Input

    5 6 5 3 5 2 3 4 12 1 5 5 4 2 3 2 4 4 3 2 1
     

    Sample Output

    3
     

     

    Source

    顶点上有容量限制则进行拆点。把u点拆成u和u+n,若<u,v>有边,则u+n和v加边,v+n和u加边。

      1 //2017-08-24
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <iostream>
      5 #include <algorithm>
      6 #include <queue>
      7 #pragma comment(linker, "/STACK:1024000000,1024000000") 
      8 
      9 using namespace std;
     10 
     11 const int N = 1010;
     12 const int M = 210010;
     13 const int INF = 0x3f3f3f3f;
     14 int head[N], tot;
     15 struct Edge{
     16     int next, to, w;
     17 }edge[M];
     18 
     19 void add_edge(int u, int v, int w){
     20     edge[tot].w = w;
     21     edge[tot].to = v;
     22     edge[tot].next = head[u];
     23     head[u] = tot++;
     24 }
     25 
     26 struct Dinic{
     27     int level[N], S, T;
     28     void init(int _S, int _T){
     29         S = _S;
     30         T = _T;
     31         tot = 0;
     32         memset(head, -1, sizeof(head));
     33     }
     34     bool bfs(){
     35         queue<int> que;
     36         memset(level, -1, sizeof(level));
     37         level[S] = 0;
     38         que.push(S);
     39         while(!que.empty()){
     40             int u = que.front();
     41             que.pop();
     42             for(int i = head[u]; i != -1; i = edge[i].next){
     43                 int v = edge[i].to;
     44                 int w = edge[i].w;
     45                 if(level[v] == -1 && w > 0){
     46                     level[v] = level[u]+1;
     47                     que.push(v);
     48                 }
     49             }
     50         }
     51         return level[T] != -1;
     52     }
     53     int dfs(int u, int flow){
     54         if(u == T)return flow;
     55         int ans = 0, fw;
     56         for(int i = head[u]; i != -1; i = edge[i].next){
     57             int v = edge[i].to, w = edge[i].w;
     58             if(!w || level[v] != level[u]+1)
     59                   continue;
     60             fw = dfs(v, min(flow-ans, w));
     61             ans += fw;
     62             edge[i].w -= fw;
     63             edge[i^1].w += fw;
     64             if(ans == flow)return ans;
     65         }
     66         if(ans == 0)level[u] = -1;
     67         return ans;
     68     }
     69     int maxflow(){
     70         int flow = 0, f;
     71         while(bfs())
     72               while((f = dfs(S, INF)) > 0)
     73                 flow += f;
     74         return flow;    
     75     }
     76 }dinic;
     77 
     78 char str[N];
     79 
     80 int main()
     81 {
     82     std::ios::sync_with_stdio(false);    
     83     //freopen("inputI.txt", "r", stdin);
     84     int n, m;
     85     while(cin>>n>>m){
     86         int s, t;
     87         cin>>s>>t;
     88         dinic.init(s, t+n);
     89         int u, v, w;
     90         for(int i = 1; i <= n; i++){
     91             cin>>w;
     92             add_edge(i, i+n, w);
     93             add_edge(i+n, i, 0);
     94         }
     95         while(m--){
     96             cin>>u>>v;
     97             add_edge(u+n, v, INF);
     98             add_edge(v, u+n, 0);
     99             add_edge(v+n, u, INF);
    100             add_edge(u, v+n, 0);
    101         }
    102         printf("%d
    ", dinic.maxflow());
    103     }    
    104     return 0;
    105 }
  • 相关阅读:
    进程池和线程池、协程、TCP单线程实现并发
    GIL全局解释锁,死锁,信号量,event事件,线程queue,TCP服务端实现并发
    进程补充和线程的介绍
    进程的介绍和使用
    异常处理和UDP Socket套接字
    TCP Socket 套接字 和 粘包问题
    网络编程
    面向对象高级——反射和元类
    面向对象三大特性之——多态和一些内置函数
    面向对象-内置方法
  • 原文地址:https://www.cnblogs.com/Penn000/p/7423487.html
Copyright © 2020-2023  润新知