• CodeForces 429B


     Working out

    Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u
     

    Description

    Summer is coming! It's time for Iahub and Iahubina to work out, as they both want to look hot at the beach. The gym where they go is a matrix a with n lines and m columns. Let number a[i][j] represents the calories burned by performing workout at the cell of gym in thei-th line and the j-th column.

    Iahub starts with workout located at line 1 and column 1. He needs to finish with workout a[n][m]. After finishing workout a[i][j], he can go to workout a[i + 1][j] or a[i][j + 1]. Similarly, Iahubina starts with workout a[n][1] and she needs to finish with workouta[1][m]. After finishing workout from cell a[i][j], she goes to either a[i][j + 1] or a[i - 1][j].

    There is one additional condition for their training. They have to meet in exactly one cell of gym. At that cell, none of them will work out. They will talk about fast exponentiation (pretty odd small talk) and then both of them will move to the next workout.

    If a workout was done by either Iahub or Iahubina, it counts as total gain. Please plan a workout for Iahub and Iahubina such as total gain to be as big as possible. Note, that Iahub and Iahubina can perform workouts with different speed, so the number of cells that they use to reach meet cell may differs.

    Input

    The first line of the input contains two integers n and m (3 ≤ n, m ≤ 1000). Each of the next n lines contains m integers: j-th number from i-th line denotes element a[i][j] (0 ≤ a[i][j] ≤ 105).

    Output

    The output contains a single number — the maximum total gain possible.

    Sample Input

    Input
    3 3
    100 100 100
    100 1 100
    100 100 100
    Output
    800

    Hint

    Iahub will choose exercises a[1][1] → a[1][2] → a[2][2] → a[3][2] → a[3][3]. Iahubina will choose exercises a[3][1] → a[2][1] → a[2][2] → a[2][3] → a[1][3].

    题目意思:给一个n*m的网格,一个人从左上走到右下(只能往右或往下),另一个人从左下走到右上(只能往右或往上),每个格子都有一定数值,经过就可以获得该数值,两人在网格中只能相遇一次,相遇点数值两人都不能获得,求两人获得数值和的最大值。 

    解题思路:先预处理出从四个顶点出发到任一点的最大值,用dp即可。然后 枚举相遇点,相遇点不可能在边缘,因为那样交点就肯定不止一个,对于每个交点有两种方式走,求出两种方式最大值就可。

     1 //2016.8.30
     2 #include<iostream>
     3 #include<cstdio>
     4 
     5 using namespace std;
     6 
     7 const int maxn = 1005;
     8 int n, m, a[maxn][maxn];
     9 int dp1[maxn][maxn],dp2[maxn][maxn],dp3[maxn][maxn],dp4[maxn][maxn];
    10 //dp1[i][j] := 从 (1, 1) 到 (i, j) 的最大分数 
    11 //dp2[i][j] := 从 (i, j) 到 (n, m) 的最大分数 
    12 //dp3[i][j] := 从 (n, 1) 到 (i, j) 的最大分数 
    13 //dp4[i][j] := 从 (i, j) 到 (1, m) 的最大分数
    14 int main()
    15 {
    16     while(cin>>n>>m)
    17     {
    18         for(int i = 1; i <= n; i++)
    19           for(int j = 1; j <= m; j++)
    20             scanf("%d", &a[i][j]);
    21     for(int i = 1; i <= n; i++)
    22       for(int j = 1; j <= m; j++)
    23         dp1[i][j] = max(dp1[i-1][j], dp1[i][j-1])+a[i][j];
    24     
    25     for(int i = n; i >= 1; i--)
    26        for(int j = m; j >= 1; j--)
    27         dp2[i][j] = max(dp2[i+1][j], dp2[i][j+1])+a[i][j];
    28 
    29     for(int i = n; i >= 1; i--)
    30         for(int j = 1; j <= m; j++)
    31         dp3[i][j] = a[i][j]+max(dp3[i][j-1], dp3[i+1][j]);
    32 
    33     for(int i = 1; i <= n; i++)
    34         for(int j = m; j >= 1; j--)
    35         dp4[i][j] = a[i][j]+max(dp4[i][j+1], dp4[i-1][j]);
    36 
    37     int ans = 0;
    38     for(int i = 2; i < n; i++)
    39       for(int j  = 2; j < m; j++)
    40       {
    41           ans = max(ans, dp1[i-1][j]+dp2[i+1][j]+dp3[i][j-1]+dp4[i][j+1]);
    42           ans = max(ans, dp1[i][j-1]+dp2[i][j+1]+dp3[i+1][j]+dp4[i-1][j]);
    43       }
    44     cout<<ans<<endl;
    45     }
    46     return 0;
    47 }
  • 相关阅读:
    【JBPM4】创建流程实例
    【JBPM4】流程部署
    Table上下滚动
    oracle 导入dmp文件
    Win7下安装Oracle 10g
    【Hibernate3.3复习知识点二】
    通过IP地址和子网掩码计算主机数
    vue.js知识总结
    vue生产环境部署总结
    移动端上遇到的各种坑与相对解决方案
  • 原文地址:https://www.cnblogs.com/Penn000/p/5823608.html
Copyright © 2020-2023  润新知