• HDU3415(单调队列)


    Max Sum of Max-K-sub-sequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 7413    Accepted Submission(s): 2745


    Problem Description

    Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
    Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
     

    Input

    The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. 
    Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
     

    Output

    For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
     

    Sample Input

    4
    6 3
    6 -1 2 -6 5 -5
    6 4
    6 -1 2 -6 5 -5
    6 3
    -1 2 -6 5 -5 6
    6 6
    -1 -1 -1 -1 -1 -1
     

    Sample Output

    7 1 3
    7 1 3
    7 6 2
    -1 1 1
     

    单调队列即保持队列中的元素单调递增(或递减)的这样一个队列,可以从两头删除,只能从队尾插入。单调队列的具体作用在于,由于保持队列中的元素满足单调性,对于上述问题中的每个j,可以用O(1)的时间找到对应的s[i]。(保持队列中的元素单调增的话,队首元素便是所要的元素了)。

    维护方法:对于每个j,我们插入s[j-1](为什么不是s[j]? 队列里面维护的是区间开始的下标,j是区间结束的下标),插入时从队尾插入。为了保证队列的单调性,我们从队尾开始删除元素,直到队尾元素比当前需要插入的元素优(本题中是值比待插入元素小,位置比待插入元素靠前,不过后面这一个条件可以不考虑),就将当前元素插入到队尾。之所以可以将之前的队列尾部元素全部删除,是因为它们已经不可能成为最优的元素了,因为当前要插入的元素位置比它们靠前,值比它们小。我们要找的,是满足(i>=j-k+1)的i中最小的s[i],位置越大越可能成为后面的j的最优s[i]。

    在插入元素后,从队首开始,将不符合限制条件(i>=j-k+1)的元素全部删除,此时队列一定不为空。(因为刚刚插入了一个一定符合条件的元素)

     1 //2016.8.22
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<queue>
     5 
     6 using namespace std;
     7 
     8 const int N = 100005;
     9 const int inf = 0x3f3f3f3f;
    10 int arr[N], sum[N*2];
    11 
    12 int main()
    13 {
    14     int T, n, k, bg, ed;
    15     cin>>T;
    16     while(T--)
    17     {
    18         scanf("%d%d", &n, &k);
    19         sum[0] = 0;
    20         for(int i = 1; i <= n; i++)
    21         {
    22               scanf("%d", &arr[i]);
    23             sum[i] = sum[i-1]+arr[i];
    24         }
    25         for(int i = n+1; i < n+k; i++)
    26               sum[i] = sum[i-1]+arr[i-n];//求一个前缀和
    27         int ans = -inf;
    28         deque<int> dq;//双端队列
    29         for(int i = 1; i <= n+k-1; i++)
    30         {
    31             while(!dq.empty()&&sum[i-1]<sum[dq.back()])//保持单调,使队首的sum尽量小
    32                   dq.pop_back();
    33             while(!dq.empty()&&dq.front()<i-k)
    34                   dq.pop_front();
    35             dq.push_back(i-1);
    36             if(sum[i]-sum[dq.front()]>ans)//sum[i]-sum[dq.front()]就是子段的和
    37             {
    38                 ans = sum[i]-sum[dq.front()];
    39                 bg = dq.front()+1;
    40                 ed = i;
    41             }
    42         }
    43         if(ed>n)ed %= n;
    44         printf("%d %d %d
    ", ans, bg, ed);
    45     }
    46 
    47     return 0;
    48 }
  • 相关阅读:
    ASP.NET MVC EF4.1
    RabbitMQ Boot Step
    图书商城项目总论
    CodeSharp.EventSourcing框架介绍如何实现异步事件订阅
    asp.net的cms 原理篇
    异步编程:线程概述及使用
    2012
    CodeSharp.EventSourcing框架介绍
    最近开发的一个文档管理系统
    团队项目开发
  • 原文地址:https://www.cnblogs.com/Penn000/p/5795763.html
Copyright © 2020-2023  润新知