Max Sum of Max-K-sub-sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7413 Accepted Submission(s): 2745
Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
单调队列即保持队列中的元素单调递增(或递减)的这样一个队列,可以从两头删除,只能从队尾插入。单调队列的具体作用在于,由于保持队列中的元素满足单调性,对于上述问题中的每个j,可以用O(1)的时间找到对应的s[i]。(保持队列中的元素单调增的话,队首元素便是所要的元素了)。
维护方法:对于每个j,我们插入s[j-1](为什么不是s[j]? 队列里面维护的是区间开始的下标,j是区间结束的下标),插入时从队尾插入。为了保证队列的单调性,我们从队尾开始删除元素,直到队尾元素比当前需要插入的元素优(本题中是值比待插入元素小,位置比待插入元素靠前,不过后面这一个条件可以不考虑),就将当前元素插入到队尾。之所以可以将之前的队列尾部元素全部删除,是因为它们已经不可能成为最优的元素了,因为当前要插入的元素位置比它们靠前,值比它们小。我们要找的,是满足(i>=j-k+1)的i中最小的s[i],位置越大越可能成为后面的j的最优s[i]。
在插入元素后,从队首开始,将不符合限制条件(i>=j-k+1)的元素全部删除,此时队列一定不为空。(因为刚刚插入了一个一定符合条件的元素)
1 //2016.8.22 2 #include<iostream> 3 #include<cstdio> 4 #include<queue> 5 6 using namespace std; 7 8 const int N = 100005; 9 const int inf = 0x3f3f3f3f; 10 int arr[N], sum[N*2]; 11 12 int main() 13 { 14 int T, n, k, bg, ed; 15 cin>>T; 16 while(T--) 17 { 18 scanf("%d%d", &n, &k); 19 sum[0] = 0; 20 for(int i = 1; i <= n; i++) 21 { 22 scanf("%d", &arr[i]); 23 sum[i] = sum[i-1]+arr[i]; 24 } 25 for(int i = n+1; i < n+k; i++) 26 sum[i] = sum[i-1]+arr[i-n];//求一个前缀和 27 int ans = -inf; 28 deque<int> dq;//双端队列 29 for(int i = 1; i <= n+k-1; i++) 30 { 31 while(!dq.empty()&&sum[i-1]<sum[dq.back()])//保持单调,使队首的sum尽量小 32 dq.pop_back(); 33 while(!dq.empty()&&dq.front()<i-k) 34 dq.pop_front(); 35 dq.push_back(i-1); 36 if(sum[i]-sum[dq.front()]>ans)//sum[i]-sum[dq.front()]就是子段的和 37 { 38 ans = sum[i]-sum[dq.front()]; 39 bg = dq.front()+1; 40 ed = i; 41 } 42 } 43 if(ed>n)ed %= n; 44 printf("%d %d %d ", ans, bg, ed); 45 } 46 47 return 0; 48 }