• CodeForces 512B(区间dp)


    D - Fox And Jumping

                          Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

    Description

    Fox Ciel is playing a game. In this game there is an infinite long tape with cells indexed by integers (positive, negative and zero). At the beginning she is standing at the cell 0.

    There are also n cards, each card has 2 attributes: length li and cost ci. If she pays ci dollars then she can apply i-th card. After applyingi-th card she becomes able to make jumps of length li, i. e. from cell x to cell (x - li) or cell (x + li).

    She wants to be able to jump to any cell on the tape (possibly, visiting some intermediate cells). For achieving this goal, she wants to buy some cards, paying as little money as possible.

    If this is possible, calculate the minimal cost.

    Input

    The first line contains an integer n (1 ≤ n ≤ 300), number of cards.

    The second line contains n numbers li (1 ≤ li ≤ 109), the jump lengths of cards.

    The third line contains n numbers ci (1 ≤ ci ≤ 105), the costs of cards.

    Output

    If it is impossible to buy some cards and become able to jump to any cell, output -1. Otherwise output the minimal cost of buying such set of cards.

    Sample Input

    Input
    3
    100 99 9900
    1 1 1
    Output
    2
    Input
    5
    10 20 30 40 50
    1 1 1 1 1
    Output
    -1
    Input
    7
    15015 10010 6006 4290 2730 2310 1
    1 1 1 1 1 1 10
    Output
    6
    Input
    8
    4264 4921 6321 6984 2316 8432 6120 1026
    4264 4921 6321 6984 2316 8432 6120 1026
    Output
    7237

    区间dp
     1 //2016.8.6
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<map>
     5 #include<algorithm>
     6 
     7 using namespace std;
     8 
     9 int l[305], c[305];
    10 map<int, int>dp1, dp2;
    11 
    12 int gcd(int a, int b)
    13 {
    14     return b==0?a:gcd(b, a%b);
    15 }
    16 
    17 int main()
    18 {
    19     int n;
    20     while(cin>>n)
    21     {
    22         dp1.clear();
    23         for(int i = 1; i <= n; i++)
    24           scanf("%d", &l[i]);
    25         for(int i = 1; i <= n; i++)
    26           scanf("%d", &c[i]);
    27         dp1[0] = 0;
    28         for(int i = 1; i <= n; i++)
    29         {
    30             map<int, int>::iterator it;
    31             for(it = dp1.begin(); it != dp1.end(); it++)
    32             {
    33                 int g = gcd(it->first, l[i]);
    34                 if(dp1.count(g))
    35                   dp1[g] = min(it->second+c[i], dp1[g]);
    36                 else dp1[g] = it->second+c[i];
    37             }
    38         }
    39         if(dp1.count(1))cout<<dp1[1]<<endl;
    40         else cout<<-1<<endl;
    41     }
    42 
    43     return 0;
    44 }
  • 相关阅读:
    第6 章 : 应用编排与管理:Deployment
    第5 章 : 应用编排与管理:核心原理
    第4 章 : 理解 Pod 和容器设计模式
    第3 章 : Kubernetes 核心概念
    第2 章 : 容器基本概念
    第1 章 : 第一堂“云原生”课
    阿里云原生技术公开课程-讲师记录及视频链接
    Shell中的(),{}几种语法用法-单独总结
    折腾kubernetes各种问题汇总-<1>
    Kubernetes中Deployment部署故障排除
  • 原文地址:https://www.cnblogs.com/Penn000/p/5745012.html
Copyright © 2020-2023  润新知