题意
(n) 个点 (m) 条边的无向连通图,每个点有点权,(q) 个要求,每次更新一个点的点权或查询两点间路径权值最小的点最小的路径。
思路
算是圆方树的板子吧?圆方树处理的主要就是两点之间路径的问题。
我们先对原图建一棵圆方树,然后每个圆点的信息传递给父亲,一定是方点,用堆维护信息。最后只要树剖线段树查路径最小值即可,注意特判 ( m{lca}) 即可。
代码
#include<bits/stdc++.h>
#define FOR(i, x, y) for(int i = (x), i##END = (y); i <= i##END; ++i)
#define DOR(i, x, y) for(int i = (x), i##END = (y); i >= i##END; --i)
template<typename T, typename _T> inline bool chk_min(T &x, const _T &y) {return y < x ? x = y, 1 : 0;}
template<typename T, typename _T> inline bool chk_max(T &x, const _T &y) {return x < y ? x = y, 1 : 0;}
typedef long long ll;
const int N = 100005;
const int M = 100005;
template<const int N, const int M, typename T> struct Linked_List
{
int head[N], nxt[M], tot; T to[M];
Linked_List() {clear();}
T &operator [](const int x) {return to[x];}
void clear() {memset(head, -1, sizeof(head)), tot = 0;}
void add(int u, T v) {to[tot] = v, nxt[tot] = head[u], head[u] = tot++;}
#define EOR(i, G, u) for(int i = G.head[u]; ~i; i = G.nxt[i])
};
struct Segment_Tree
{
int mi[N << 3];
void update(int k, int x, int val, int l, int r)
{
if(l == r) {mi[k] = val; return;}
int mid = (l + r) >> 1;
if(x <= mid) update(k << 1, x, val, l, mid);
else update(k << 1 | 1, x, val, mid + 1, r);
mi[k] = std::min(mi[k << 1], mi[k << 1 | 1]);
}
int query(int k, int L, int R, int l, int r)
{
if(L <= l && r <= R) return mi[k];
int mid = (l + r) >> 1;
if(R <= mid) return query(k << 1, L, R, l, mid);
else if(L > mid) return query(k << 1 | 1, L, R, mid + 1, r);
else return std::min(query(k << 1, L, R, l, mid), query(k << 1 | 1, L, R, mid + 1, r));
}
};
Linked_List<N, M << 1, int> G;
Linked_List<N << 1, N << 2, int> T;
Segment_Tree ST;
int dfn[N], low[N], stk[N], idxer, bcc, tp;
int fa[N << 1], dep[N << 1], sz[N << 1], son[N << 1], top[N << 1];
int lfn[N << 1], rfn[N << 1], ori[N << 1], dfn_idx;
int pw[N << 1];
std::multiset<int> st[N << 1];
int n, m, q;
void tarjan(int u, int fa_e)
{
dfn[u] = low[u] = ++idxer;
stk[++tp] = u;
EOR(i, G, u)
{
if(i == (fa_e ^ 1)) continue;
int v = G[i];
if(!dfn[v])
{
tarjan(v, i), chk_min(low[u], low[v]);
if(low[v] >= dfn[u])
{
bcc++;
do
{
T.add(n + bcc, stk[tp]);
T.add(stk[tp], n + bcc);
}
while(stk[tp--] != v);
T.add(n + bcc, u), T.add(u, n + bcc);
}
}
else if(dfn[v] < dfn[u])
chk_min(low[u], dfn[v]);
}
}
void dfs(int u, int f, int d)
{
fa[u] = f, dep[u] = d, sz[u] = 1, son[u] = 0;
EOR(i, T, u)
{
int v = T[i];
if(v == f) continue;
dfs(v, u, d + 1);
sz[u] += sz[v];
if(sz[v] > sz[son[u]]) son[u] = v;
}
}
void hld(int u, int tp)
{
ori[lfn[u] = ++dfn_idx] = u;
top[u] = tp;
if(son[u]) hld(son[u], tp);
EOR(i, T, u)
{
int v = T[i];
if(v == fa[u] || v == son[u]) continue;
hld(v, v);
}
rfn[u] = dfn_idx;
}
int get_lca(int u, int v)
{
while(top[u] != top[v])
{
if(dep[top[u]] < dep[top[v]]) std::swap(u, v);
u = fa[top[u]];
}
return dep[u] < dep[v] ? u : v;
}
int query(int u, int v)
{
int res = 2e9;
while(top[u] != top[v])
{
if(dep[top[u]] < dep[top[v]]) std::swap(u, v);
chk_min(res, ST.query(1, lfn[top[u]], lfn[u], 1, n + bcc));
u = fa[top[u]];
}
if(dep[u] > dep[v]) std::swap(u, v);
chk_min(res, ST.query(1, lfn[u], lfn[v], 1, n + bcc));
if(u > n) chk_min(res, pw[fa[u]]);
return res;
}
int main()
{
scanf("%d%d%d", &n, &m, &q);
FOR(i, 1, n) scanf("%d", &pw[i]);
FOR(i, 1, m)
{
int u, v;
scanf("%d%d", &u, &v);
G.add(u, v), G.add(v, u);
}
tarjan(1, -1);
dfs(1, 0, 1), hld(1, 1);
FOR(u, n + 1, n + bcc)
{
EOR(i, T, u)
{
int v = T[i];
if(v == fa[u]) continue;
st[u].insert(pw[v]);
}
pw[u] = (*st[u].begin());
}
FOR(i, 1, n + bcc) ST.update(1, lfn[i], pw[i], 1, n + bcc);
while(q--)
{
char str[3]; int a, b;
scanf("%s%d%d", str, &a, &b);
if(str[0] == 'C')
{
if(fa[a])
{
st[fa[a]].erase(st[fa[a]].find(pw[a]));
st[fa[a]].insert(b);
pw[fa[a]] = (*st[fa[a]].begin());
ST.update(1, lfn[fa[a]], pw[fa[a]], 1, n + bcc);
}
pw[a] = b;
ST.update(1, lfn[a], b, 1, n + bcc);
}
else if(str[0] == 'A')
printf("%d
", query(a, b));
}
return 0;
}