传送门
Description
有(n)个圆,每次找到这些圆中半径最大中的编号最小的圆,删除ta及与其有交集的所有圆。
对于每个圆,求出它是被哪一个圆删除的。
Solution
K-D Tree
每个点表示这个圆的外接矩形
排序后直接暴力搜索
相当于在搜索过程中进行了剪枝
复杂度玄学
要对全图坐标进行旋转
这题的(eps)不要开得太大,(1e-3)就行了,不然会莫名的Wa
Code
#include<bits/stdc++.h>
#define ll long long
#define db double
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define reg register
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
const int MN=3e5+5;
const db eps=1e-3,thi=acos(-1.)/5.,inf=1e12;
int N,D;
db sq(db x){return x*x;}
struct Point
{
db d[2],mx[2],mn[2];int R,l,r,id;
db& operator[](int x){return d[x];}
bool operator<(const Point&x)const{return d[D]<x.d[D];}
}a[MN];
bool cmp(Point x,Point y){return x.R>y.R||(x.R==y.R&&x.id<y.id);}
int rt,ans[MN];
struct K_D_Tree{
Point p[MN],T;
void up(int x)
{
int l=p[x].l,r=p[x].r;
for(int i=0;i<2;++i)
{
if(l) p[x].mn[i]=min(p[x].mn[i],p[l].mn[i]),
p[x].mx[i]=max(p[x].mx[i],p[l].mx[i]);
if(r) p[x].mn[i]=min(p[x].mn[i],p[r].mn[i]),
p[x].mx[i]=max(p[x].mx[i],p[r].mx[i]);
}
}
int build(int l,int r,int th)
{
if(l>r) return 0;
reg int mid=(l+r)>>1;D=th;
std::nth_element(a+l,a+mid,a+r+1);p[mid]=a[mid];
for(reg int i=0;i<2;++i) p[mid].mx[i]=a[mid][i]+a[mid].R,p[mid].mn[i]=a[mid][i]-a[mid].R;
p[mid].l=build(l,mid-1,th^1);p[mid].r=build(mid+1,r,th^1);up(mid);
return mid;
}
void query(int x)
{
for(int i=0;i<2;++i) if(T[i]-T.R>p[x].mx[i]||T[i]+T.R<p[x].mn[i]) return;
if(!ans[p[x].id])
{
db dis=sq(T.R+p[x].R),res=0.;
for(int i=0;i<2;++i) res+=sq(p[x][i]-T[i]);
if(res-dis<eps) ans[p[x].id]=T.id;
}
if(p[x].l)query(p[x].l);if(p[x].r)query(p[x].r);
}
}kdtree;
int main()
{
N=read();
reg int i,x,y;
for(i=1;i<=N;++i)
{
x=read(),y=read();
a[i][1]=(db)x*sin(thi)+(db)y*cos(thi);a[i][0]=(db)x*cos(thi)-(db)y*sin(thi);
a[i].R=read();a[i].id=i;
}
rt=kdtree.build(1,N,0);
std::sort(a+1,a+N+1,cmp);
for(i=1;i<=N;++i)if(!ans[a[i].id])
kdtree.T=a[i],kdtree.query(rt);
for(i=1;i<=N;++i) printf("%d ",ans[i]);
return 0;
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!