• [20180901]四校联考


    T1、数列(number)

    Solution

    首先我们考虑形如(frac{n^2}{2})的数,显然n个这样的数会提供(frac{n(n-1)}{2})对。

    把k看作是几个形如(frac{n(n-1)}{2})的和,从大到小贪心加。

    要保证任意两个不同的数的和不是完全平方数,暴力构造一下就可以了。



    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    typedef long long ll;
    ll K,num[100005],a[155];
    ll ans,print[155];
    ll l,r,res,pos=0;
    const ll nn[105]={0,1,3,5,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67};
    int main(){
    	freopen("number.in","r",stdin);
    	freopen("number.out","w",stdout);
    	scanf("%lld",&K);
    	if(K<100000){
    		if(K<=6){
    			printf("%lld
    ",K+1);printf("1 ");
    			for(int i=1;i<=K;i++) printf("3 ");
    		}
    		else{
    			printf("%d
    ",K-1);
    			printf("2 2 2 2 ");printf("1 ");
    			for(int i=1;i<=K-6;i++) printf("3 ");
    		}
    		return 0;
    	}
    	for(int i=1;i<=100000;i++) num[i]=1LL*i*(i-1)/2;
    	for(int i=1;i<=100;i++) a[i]=2LL*nn[i]*nn[i];
    	while(K!=0){
    		++pos;
    		l=2;r=100000;
    		while(l<=r){
    			ll mid=(l+r)>>1;
    			if(num[mid]<=K) res=mid,l=mid+1;
    			else r=mid-1;
    		}
    		print[pos]=res;
    		K-=num[res];ans+=res;
    	}
    	printf("%lld
    ",ans);
    	for(register int i=1;i<=pos;i++)
    	for(register int j=1;j<=print[i];j++) printf("%lld ",a[i]);
    	return 0;
    }
    



    T2、散步(walk)

    Solution

    对于15分,直接用map来记录就可以直接判断了。

    官方题解



    /*15 points
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<map>
    #define MN 100005
    using namespace std;
    int x,y,n,k,ans;
    char s[MN];
    std::map<std::pair<int,int>,bool> mp;
    std::map<std::pair<int,int>,bool> Mp;
    int main(){
    	freopen("walk.in","r",stdin);
    	freopen("walk.out","w",stdout);
    	scanf("%d%d",&n,&k);
    	scanf("%s",s+1);
    	if(k!=1) return 0*puts("orz!");
    	x=0;y=0;mp[make_pair(0,0)]=true;
    	for(int i=1;i<=n;i++){
    		if(s[i]=='W'){x-=1;}
    		if(s[i]=='E'){x+=1;}
    		if(s[i]=='S'){y-=1;}
    		if(s[i]=='N'){y+=1;}
    		mp[make_pair(x,y)]=true;
    		if(mp[make_pair(x-1,y)]&&mp[make_pair(x-1,y-1)]&&mp[make_pair(x,y-1)]&&Mp[make_pair(x-1,y-1)]!=true) Mp[make_pair(x-1,y-1)]=true,ans++;
    		if(mp[make_pair(x-1,y)]&&mp[make_pair(x-1,y+1)]&&mp[make_pair(x,y+1)]&&Mp[make_pair(x-1,y)]!=true) Mp[make_pair(x-1,y)]=true,ans++;
    		if(mp[make_pair(x+1,y)]&&mp[make_pair(x+1,y-1)]&&mp[make_pair(x,y-1)]&&Mp[make_pair(x,y-1)]!=true) Mp[make_pair(x,y-1)]=true,ans++;
    		if(mp[make_pair(x+1,y)]&&mp[make_pair(x+1,y+1)]&&mp[make_pair(x,y+1)]&&Mp[make_pair(x,y)]!=true) Mp[make_pair(x,y)]=true,ans++;
    	}
    	printf("%d
    ",ans);
    }*/
    #include<bits/stdc++.h>
    #define ll long long
    #define F(i,a,b) for(i=a;i<=b;i++)
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    	return x*f;
    }
    #define MN 100005
    #define depail std::deque<std::pair<int,int> >
    #define MAP std::map<std::pair<int,int>,depail >
    int n,k,a[MN],b[MN],p,q;
    char s[MN];MAP mp;ll ans;
    int calc(int tp,depail a,depail b,depail c,depail d){
    	for(depail::iterator i=a.begin();i!=a.end();i++) i->first+=tp,i->second+=tp; 
    	for(depail::iterator i=b.begin();i!=b.end();i++) i->first+=tp,i->second+=tp; 
    	int res=0;
    	#define f(a) (a.empty()?-1e9:a.front().second) 
    	#define G(a) a.front().first
    	#define H(a) if(f(a)==r) a.pop_front();
    	int l=-1e9;
    	while(1){
    		int r=std::min(std::min(f(a),f(b)),std::min(f(c),f(d)));
    		if(r==-1e9) break;
    		l=std::max(l,std::max(std::max(G(a),G(b)),std::max(G(c),G(d))));
    		if(l<=r) res+=r-l+1,l=r+1;
    		H(a);H(b);H(c);H(d);
    	}
    	return res;
    } 
    int main(){
    	freopen("walk.in","r",stdin);
    	freopen("walk.out","w",stdout);
    	scanf("%d%d",&n,&k);
    	scanf("%s",s+1);
    	register int i,x=0,y=0;
    	F(i,1,n){
    		if(s[i]=='W'){x-=1;}
    		if(s[i]=='E'){x+=1;}
    		if(s[i]=='S'){y-=1;}
    		if(s[i]=='N'){y+=1;}
    		a[i]=x;b[i]=y;
    	}
    	if(a[n]<0) F(i,1,n) a[i]=-a[i];
    	if(b[n]<0) F(i,1,n) b[i]=-b[i];
    	if(a[n]==0) F(i,1,n) std::swap(a[i],b[i]);
    	p=a[n]?a[n]:-1e9;q=b[n];	
    	if(a[n]==0)
    		F(i,0,n) mp[std::make_pair(a[i],b[i])].push_back(std::make_pair(0,0));
    	else
    		F(i,0,n){
    			int d=a[i]/p;
    			if(a[i]-p*d<0) d--;
    			mp[std::make_pair(a[i]-p*d,b[i]-q*d)].push_back(std::make_pair(d,d+k-1));
    		//	x=a[i]%p;y=b[i]-(a[i]/p)*q;
    		//	mp[std::make_pair(x,y)].push_back(std::make_pair(a[i]/p,a[i]/p+k-1));
    		}
    	for(MAP::iterator i=mp.begin();i!=mp.end();++i) sort(i->second.begin(),i->second.end());
    	for(MAP::iterator i=mp.begin();i!=mp.end();++i){
    		x=i -> first.first,y=i -> first.second;
    		#define solve(d,p2,p3,p4) {if(mp.count(p2)&&mp.count(p3)&&mp.count(p4)) ans+=calc(d,i->second,mp[p2],mp[p3],mp[p4]);} 
    		if(x!=p-1) solve(0,std::make_pair(x,y+1),std::make_pair(x+1,y),std::make_pair(x+1,y+1))
    		else solve(1,std::make_pair(x,y+1),std::make_pair(0,y-q),std::make_pair(0,y-q+1))
    	}
    	printf("%lld",ans);
    	return 0;
    }
    



    T3、考古(archaeology)

    Solution

    把操作反过来,就可以看成是,每次会有一段地面下降,问最后每一段地面会降至那一层。

    用树状数组/线段树来维护下降过程中每一段的(x,y)值,寻找下降的区间可以直接在树状数组/线段树上二分。



    #include<bits/stdc++.h>
    using namespace std;
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
    	return x*f;
    }
    #define MN 200005
    #define ll long long
    #define lowbit(a) (a&-a)
    int n,q,x[MN],l[MN];
    ll xpos[MN],ypos[MN],pos,X,Y;
    bool d[MN];
    void Cx(int x,int val){for(;x<=n;x+=lowbit(x))xpos[x]+=val;}
    void Cy(int x,int val){for(;x<=n;x+=lowbit(x))ypos[x]+=val;}
    ll G(int x){ll res=0;for(;x;x-=lowbit(x)) res+=ypos[x];return res;}
    int main(){
    	freopen("archaeology.in","r",stdin);
    	freopen("archaeology.out","w",stdout);
    	n=read();q=read();
    	register int i,j;
    	for(i=1;i<=q;++i) x[i]=read(),d[i]=read()==1,l[i]=read();
    	for(i=2;i<=n;++i) Cx(i,1);
    	for(i=q;i;--i){
    		if(d[i]){
    			pos=X=Y=0;			
    			for(j=17;~j;--j)if((pos|1<<j)<=n&&X+xpos[pos|1<<j]-Y-ypos[pos|1<<j]<x[i]) pos|=1<<j,X+=xpos[pos],Y+=ypos[pos];
    			Cx(1,-l[i]),Cy(1,-l[i]);			
    			Cx(pos+1,l[i]),Cy(pos+1,l[i]);
    		}
    		else{
    			pos=X=Y=0;
    			for(j=17;~j;--j)if((pos|1<<j)<=n&&X+xpos[pos|1<<j]+Y+ypos[pos|1<<j]<x[i]) pos|=1<<j,X+=xpos[pos],Y+=ypos[pos];
    			Cx(pos+1,l[i]),Cy(pos+1,-l[i]);
    		}
    	}
    	for(i=1;i<=n;i++) printf("%lld
    ",-G(i)); 
    	return 0;
    }
    





    Blog来自PaperCloud,未经允许,请勿转载,TKS!!

  • 相关阅读:
    在Fiddler中捕获IIS / ASP.NET流量
    SQL Server 索引分析开关
    解决谷歌浏览器在F12情况下自动断点问题(Paused in debugger)
    SQL Server 移位运算符
    手动更新了packages.config Nuget配置文件,自动引用dll
    转载:如何严格限制session在30分钟后过期!
    Sphinx 2.0.8 发布,全文搜索引擎 Installing Sphinx on Windows
    Where does Oracle SQL Developer store connections? oracle SQL Developer 连接信息保存的位置,什么地方
    利用 ROW_NUMBER() OVER ( ORDER BY 进行选择性排序,按不同字段进行排序处理,分页
    大数据学习网站
  • 原文地址:https://www.cnblogs.com/PaperCloud/p/9595551.html
Copyright © 2020-2023  润新知