记$\Delta x=x_{2}-x_{1}+1$($\Delta y$类似),周长即$2(\Delta x+\Delta y-2)$
记$f(d)$为询问所有满足$d\mid i$的点$(i,j)$的结果,显然$f(d)=(\lfloor\frac{x_{2}}{d}\rfloor-\lfloor\frac{x_{1}-1}{d}\rfloor)\Delta y$
询问$d=1$,代入可得$f(1)=\Delta x\Delta y$,那么仅需要求出$\Delta x$或$\Delta y$之一即可
性质1:$f(d)=\frac{f(1)}{d}$当且仅当$d\mid \Delta x$
性质2:若$p=2^{k}\mid\mid \Delta x$(指$2^{k+1}\not\mid \Delta x$),则$|2f(2p)-\frac{f(1)}{p}|=\Delta y$
(前者比较显然,后者可以在$\Delta x$为奇数时感性理解,具体证明代入式子即可)
在$\{2^{0},2^{1},2^{2},...,2^{7}\}$中利用性质1二分即可找到$k$,这恰会询问3次
进一步的,得到$k$后$f(2p)$总已经被求出(除非$k=7$,但此时$f(2p)$总是0),也即可计算
询问次数恰好为4,可以通过
1 #include<bits/stdc++.h> 2 using namespace std; 3 int n,x,S,ans; 4 int query(int d){ 5 printf("? %d\n",n/d*n); 6 for(int i=d;i<=n;i+=d) 7 for(int j=1;j<=n;j++)printf("%d %d ",i,j); 8 fflush(stdout); 9 scanf("%d",&x); 10 return x; 11 } 12 int main(){ 13 n=200,S=query(1),ans=0; 14 int l=0,r=7; 15 while (l<r){ 16 int mid=(l+r+1>>1),s=query(1<<mid); 17 if ((s<<mid)==S)l=mid; 18 else r=mid-1,ans=s; 19 } 20 int y=abs((ans<<1)-(S>>l)),x=S/y; 21 printf("! %d\n",(x+y-2<<1)); 22 return 0; 23 }