• [ABC240G] Teleporting Takahashi


    前言

    心血来潮闲的蛋疼VP了一场ABC,秒到这道题秒不动之后就去看论文了。

    题目

    AtCoder

    讲解

    当时脑抽了,想着想着就突然认为要最后一定要化出一个只有组合数,没有累加的式子。

    好吧,我们先看二维情况,令 \(f(k)\) 表示多 \(2k\) 步乱走的方案数。

    \[\begin{aligned} f(k)&=\sum_{i=0}^k C_{x+y+2k}^{x+i,i,y+k-i,k-i}\\ &=\sum_{i=0}^k \frac{(x+y+2k)!}{(x+i)!i!(y+k-i)!(k-i)!}化成这样就已经lose了\\ &=\sum_{i=0}^k C_{x+y+2k}^{x+k}\times C_{x+k}^{x+i}\times C_{y+k}^{i}\\ &=C_{x+y+2k}^{x+k}\times \sum_{i=0}^k C_{x+k}^{x+i}\times C_{y+k}^{i}化成这样又lose了\\ &=C_{x+y+2k}^{x+k}\times \sum_{i=0}^k C_{x+k}^{x+i}\times C_{y+k}^{y+k-i}\\ &=C_{x+y+2k}^{x+k}\times C_{x+y+2k}^{x+y+k}\\ \end{aligned} \]

    然后其实就做完了,因为第三维可以直接插进去,时间复杂度 \(O(n)\)

    刚刚在U群里面看到有大佬说最后两行是范德蒙德卷积,其可以用组合意义轻松证明!然而我看题解的时候直接意会的

    代码

    实现简单。
    //12252024832524
    #include <bits/stdc++.h>
    #define TT template<typename T>
    using namespace std; 
    
    typedef long long LL;
    const int MAXN = 10000005;
    const int MOD = 998244353;
    int n,X,Y,Z,ans;
    int fac[MAXN],ifac[MAXN];
    
    LL Read()
    {
    	LL x = 0,f = 1;char c = getchar();
    	while(c > '9' || c < '0'){if(c == '-')f = -1;c = getchar();}
    	while(c >= '0' && c <= '9'){x = (x*10) + (c^48);c = getchar();}
    	return x * f;
    }
    TT void Put1(T x)
    {
    	if(x > 9) Put1(x/10);
    	putchar(x%10^48);
    }
    TT void Put(T x,char c = -1)
    {
    	if(x < 0) putchar('-'),x = -x;
    	Put1(x); if(c >= 0) putchar(c);
    }
    TT T Max(T x,T y){return x > y ? x : y;}
    TT T Min(T x,T y){return x < y ? x : y;}
    TT T Abs(T x){return x < 0 ? -x : x;}
    
    int qpow(int x,int y){
    	int ret = 1;
    	while(y){
    		if(y & 1) ret = 1ll * ret * x % MOD;
    		x = 1ll * x * x % MOD;
    		y >>= 1;
    	}
    	return ret;
    }
    void init(int x)
    {
    	fac[0] = ifac[0] = 1;
    	for(int i = 1;i <= x;++ i) fac[i] = 1ll * fac[i-1] * i % MOD;
    	ifac[x] = qpow(fac[x],MOD-2);
    	for(int i = x-1;i >= 1;-- i) ifac[i] = ifac[i+1] * (i+1ll) % MOD;
    }
    LL C(int x,int y){
    	if(x < y || y < 0) return 0;
    	return 1ll * fac[x] * ifac[y] % MOD * ifac[x-y] % MOD;
    }
    
    int main()
    {
    //	freopen(".in","r",stdin);
    //	freopen(".out","w",stdout);
    	n = Read(); X = Abs(Read()); Y = Abs(Read()); Z = Abs(Read());
    	if(X+Y+Z > n) {Put(0,'\n');return 0;}
    	if((n-(X+Y+Z)) & 1) {Put(0,'\n');return 0;}
    	init(n);
    	for(int k = 0;X+Y+(k<<1)+Z <= n;++ k){
    		LL tmp = C(X+Y+(k<<1),X+k) * C(X+Y+(k<<1),X+Y+k) % MOD,nd = n-X-Y-(k<<1);
    		LL t1 = ((nd-Z) >> 1) + Z,t2 = nd - t1;
    		tmp = tmp * C(X+Y+(k<<1)+t1,t1) % MOD;
    		tmp = tmp * C(X+Y+(k<<1)+t1+t2,t2) % MOD;
    		ans = (ans + tmp) % MOD;
    	}
    	Put(ans,'\n');
    	return 0;
    }
    

    后记

    听说jiangly哥哥vp的时候也没过。

  • 相关阅读:
    python代写主题LDA建模和t-SNE可视化
    Python代写LDA主题模型算法应用
    R语言代写之文本分析:主题建模LDA
    Python代写商品数据预处理与K-Means聚类可视化分析
    matlab代写使用Copula仿真优化市场风险
    BZOJ 5495: [2019省队联测]异或粽子 可持久化trie+堆
    BZOJ 3689: 异或之 可持久化trie+堆
    BZOJ 4212: 神牛的养成计划 可持久化trie+trie
    BZOJ 2006: [NOI2010]超级钢琴 ST表+堆
    BZOJ 4103: [Thu Summer Camp 2015]异或运算 可持久化trie
  • 原文地址:https://www.cnblogs.com/PPLPPL/p/15926794.html
Copyright © 2020-2023  润新知