• Binder系列3—启动ServiceManager


    copy from: http://gityuan.com/2015/11/07/binder-start-sm/

    基于Android 6.0的源码剖析, 本文详细地讲解了ServiceManager启动流程

    framework/native/cmds/servicemanager/
      - service_manager.c
      - binder.c
      
    kernel/drivers/ (不同Linux分支路径略有不同)
      - staging/android/binder.c
      - android/binder.c 
    

    一. 概述

    ServiceManager是Binder IPC通信过程中的守护进程,本身也是一个Binder服务,但并没有采用libbinder中的多线程模型来与Binder驱动通信,而是自行编写了binder.c直接和Binder驱动来通信,并且只有一个循环binder_loop来进行读取和处理事务,这样的好处是简单而高效。

    ServiceManager本身工作相对简单,其功能:查询和注册服务。 对于Binder IPC通信过程中,其实更多的情形是BpBinder和BBinder之间的通信,比如ActivityManagerProxy和ActivityManagerService之间的通信等。

    1.1 流程图

    create_servicemanager

    启动过程主要以下几个阶段:

    1. 打开binder驱动:binder_open;
    2. 注册成为binder服务的大管家:binder_become_context_manager;
    3. 进入无限循环,处理client端发来的请求:binder_loop;

    二. 启动过程

    ServiceManager是由init进程通过解析init.rc文件而创建的,其所对应的可执行程序/system/bin/servicemanager,所对应的源文件是service_manager.c,进程名为/system/bin/servicemanager。

    service servicemanager /system/bin/servicemanager
        class core
        user system
        group system
        critical
        onrestart restart healthd
        onrestart restart zygote
        onrestart restart media
        onrestart restart surfaceflinger
        onrestart restart drm
    

    启动Service Manager的入口函数是service_manager.c中的main()方法,代码如下:

    2.1 main

    [ -> service_manager.c]

    int main(int argc, char **argv) {
        struct binder_state *bs;
        //打开binder驱动,申请128k字节大小的内存空间 【见小节2.2】
        bs = binder_open(128*1024);
        ...
    
        //成为上下文管理者 【见小节2.3】
        if (binder_become_context_manager(bs)) {
            return -1;
        }
    
        selinux_enabled = is_selinux_enabled(); //selinux权限是否使能
        sehandle = selinux_android_service_context_handle();
        selinux_status_open(true);
    
        if (selinux_enabled > 0) {
            if (sehandle == NULL) {  
                abort(); //无法获取sehandle
            }
            if (getcon(&service_manager_context) != 0) {
                abort(); //无法获取service_manager上下文
            }
        }
        ...
    
        //进入无限循环,处理client端发来的请求 【见小节2.4】
        binder_loop(bs, svcmgr_handler);
        return 0;
    }
    

    2.2 binder_open

    [-> servicemanager/binder.c]

    struct binder_state *binder_open(size_t mapsize)
    {
        struct binder_state *bs;【见小节2.2.1】
        struct binder_version vers;
    
        bs = malloc(sizeof(*bs));
        if (!bs) {
            errno = ENOMEM;
            return NULL;
        }
    
        //通过系统调用陷入内核,打开Binder设备驱动
        bs->fd = open("/dev/binder", O_RDWR);
        if (bs->fd < 0) {
            goto fail_open; // 无法打开binder设备
        }
    
         //通过系统调用,ioctl获取binder版本信息
        if ((ioctl(bs->fd, BINDER_VERSION, &vers) == -1) ||
            (vers.protocol_version != BINDER_CURRENT_PROTOCOL_VERSION)) {
            goto fail_open; //内核空间与用户空间的binder不是同一版本
        }
    
        bs->mapsize = mapsize;
        //通过系统调用,mmap内存映射,mmap必须是page的整数倍
        bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
        if (bs->mapped == MAP_FAILED) {
            goto fail_map; // binder设备内存无法映射
        }
    
        return bs;
    
    fail_map:
        close(bs->fd);
    fail_open:
        free(bs);
        return NULL;
    }
    

    打开binder驱动相关操作:

    先调用open()打开binder设备,open()方法经过系统调用,进入Binder驱动,然后调用方法binder_open(),该方法会在Binder驱动层创建一个binder_proc对象,再将binder_proc对象赋值给fd->private_data,同时放入全局链表binder_procs。再通过ioctl()检验当前binder版本与Binder驱动层的版本是否一致。

    调用mmap()进行内存映射,同理mmap()方法经过系统调用,对应于Binder驱动层的binder_mmap()方法,该方法会在Binder驱动层创建Binder_buffer对象,并放入当前binder_proc的proc->buffers链表。

    2.2.1 binder_state

    [-> servicemanager/binder.c]

    struct binder_state
    {
        int fd; // dev/binder的文件描述符
        void *mapped; //指向mmap的内存地址
        size_t mapsize; //分配的内存大小,默认为128KB
    };
    

    2.3 binder_become_context_manager

    [-> servicemanager/binder.c]

    int binder_become_context_manager(struct binder_state *bs)
    {
        //通过ioctl,传递BINDER_SET_CONTEXT_MGR指令【见小节2.3.1】
        return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
    }
    

    成为上下文的管理者,整个系统中只有一个这样的管理者。 通过ioctl()方法经过系统调用,对应于Binder驱动层的binder_ioctl()方法.

    2.3.1 binder_ioctl

    [-> kernel/drivers/android/binder.c]

    static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) {
        binder_lock(__func__);
        switch (cmd) {
          case BINDER_SET_CONTEXT_MGR:
              ret = binder_ioctl_set_ctx_mgr(filp);//【见小节2.3.2】
              break;
          }
          case :...
        }
        binder_unlock(__func__);
    }
    

    根据参数BINDER_SET_CONTEXT_MGR,最终调用binder_ioctl_set_ctx_mgr()方法,这个过程会持有binder_main_lock。

    2.3.2 binder_ioctl_set_ctx_mgr

    [-> kernel/drivers/android/binder.c]

    static int binder_ioctl_set_ctx_mgr(struct file *filp)
    {
        int ret = 0;
        struct binder_proc *proc = filp->private_data;
        kuid_t curr_euid = current_euid();
    
        //保证只创建一次mgr_node对象
        if (binder_context_mgr_node != NULL) {
            ret = -EBUSY; 
            goto out;
        }
    
        if (uid_valid(binder_context_mgr_uid)) {
            ...
        } else {
            //设置当前线程euid作为Service Manager的uid
            binder_context_mgr_uid = curr_euid;
        }
    
        //创建ServiceManager实体【见小节2.3.3】
        binder_context_mgr_node = binder_new_node(proc, 0, 0);
        ...
        binder_context_mgr_node->local_weak_refs++;
        binder_context_mgr_node->local_strong_refs++;
        binder_context_mgr_node->has_strong_ref = 1;
        binder_context_mgr_node->has_weak_ref = 1;
    out:
        return ret;
    }
    

    进入binder驱动,在Binder驱动中定义的静态变量

    // service manager所对应的binder_node;
    static struct binder_node *binder_context_mgr_node;
    // 运行service manager的线程uid
    static kuid_t binder_context_mgr_uid = INVALID_UID;
    

    创建了全局的binder_node对象binder_context_mgr_node,并将binder_context_mgr_node的强弱引用各加1.

    2.3.3 binder_new_node

    [-> kernel/drivers/android/binder.c]

    static struct binder_node *binder_new_node(struct binder_proc *proc,
                           binder_uintptr_t ptr,
                           binder_uintptr_t cookie)
    {
        struct rb_node **p = &proc->nodes.rb_node;
        struct rb_node *parent = NULL;
        struct binder_node *node;
        //首次进来为空
        while (*p) {
            parent = *p;
            node = rb_entry(parent, struct binder_node, rb_node);
    
            if (ptr < node->ptr)
                p = &(*p)->rb_left;
            else if (ptr > node->ptr)
                p = &(*p)->rb_right;
            else
                return NULL;
        }
    
        //给新创建的binder_node 分配内核空间
        node = kzalloc(sizeof(*node), GFP_KERNEL);
        if (node == NULL)
            return NULL;
        binder_stats_created(BINDER_STAT_NODE);
        // 将新创建的node对象添加到proc红黑树;
        rb_link_node(&node->rb_node, parent, p);
        rb_insert_color(&node->rb_node, &proc->nodes);
        node->debug_id = ++binder_last_id;
        node->proc = proc;
        node->ptr = ptr;
        node->cookie = cookie;
        node->work.type = BINDER_WORK_NODE; //设置binder_work的type
        INIT_LIST_HEAD(&node->work.entry);
        INIT_LIST_HEAD(&node->async_todo);
        return node;
    }
    

    在Binder驱动层创建binder_node结构体对象,并将当前binder_proc加入到binder_nodenode->proc。并创建binder_node的async_todo和binder_work两个队列。

    2.4 binder_loop

    [-> servicemanager/binder.c]

    void binder_loop(struct binder_state *bs, binder_handler func) {
        int res;
        struct binder_write_read bwr;
        uint32_t readbuf[32];
    
        bwr.write_size = 0;
        bwr.write_consumed = 0;
        bwr.write_buffer = 0;
    
        readbuf[0] = BC_ENTER_LOOPER;
        //将BC_ENTER_LOOPER命令发送给binder驱动,让Service Manager进入循环 【见小节2.4.1】
        binder_write(bs, readbuf, sizeof(uint32_t));
    
        for (;;) {
            bwr.read_size = sizeof(readbuf);
            bwr.read_consumed = 0;
            bwr.read_buffer = (uintptr_t) readbuf;
    
            res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); //进入循环,不断地binder读写过程
            if (res < 0) {
                break;
            }
    
            // 解析binder信息 【见小节2.5】
            res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
            if (res == 0) {
                break;
            }
            if (res < 0) {
                break;
            }
        }
    }
    

    进入循环读写操作,由main()方法传递过来的参数func指向svcmgr_handler。

    binder_write通过ioctl()将BC_ENTER_LOOPER命令发送给binder驱动,此时bwr只有write_buffer有数据,进入binder_thread_write()方法。 接下来进入for循环,执行ioctl(),此时bwr只有read_buffer有数据,那么进入binder_thread_read()方法。

    2.4.1 binder_write

    [-> servicemanager/binder.c]

    int binder_write(struct binder_state *bs, void *data, size_t len) {
        struct binder_write_read bwr;
        int res;
    
        bwr.write_size = len;
        bwr.write_consumed = 0;
        bwr.write_buffer = (uintptr_t) data; //此处data为BC_ENTER_LOOPER
        bwr.read_size = 0;
        bwr.read_consumed = 0;
        bwr.read_buffer = 0;
        //【见小节2.4.2】
        res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
        return res;
    }
    

    根据传递进来的参数,初始化bwr,其中write_size大小为4,write_buffer指向缓冲区的起始地址,其内容为BC_ENTER_LOOPER请求协议号。通过ioctl将bwr数据发送给binder驱动,则调用其binder_ioctl方法,如下:

    2.4.2 binder_ioctl

    [-> kernel/drivers/android/binder.c]

    static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
    {
        int ret;
        struct binder_proc *proc = filp->private_data;
        struct binder_thread *thread;
        ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
        ...
    
        binder_lock(__func__);
        thread = binder_get_thread(proc); //获取binder_thread
        switch (cmd) {
          case BINDER_WRITE_READ:  //进行binder的读写操作
              ret = binder_ioctl_write_read(filp, cmd, arg, thread); //【见小节2.4.3】
              if (ret)
                  goto err;
              break;
          case ...
        }
        ret = 0;
    
    err:
        if (thread)
            thread->looper &= ~BINDER_LOOPER_STATE_NEED_RETURN;
        binder_unlock(__func__);
         ...
        return ret;
    }
    

    2.4.3 binder_ioctl_write_read

    [-> kernel/drivers/android/binder.c]

    static int binder_ioctl_write_read(struct file *filp,
                    unsigned int cmd, unsigned long arg,
                    struct binder_thread *thread)
    {
        int ret = 0;
        struct binder_proc *proc = filp->private_data;
        void __user *ubuf = (void __user *)arg;
        struct binder_write_read bwr;
    
        if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { //把用户空间数据ubuf拷贝到bwr
            ret = -EFAULT;
            goto out;
        }
    
        if (bwr.write_size > 0) { //此时写缓存有数据【见小节2.4.4】
            ret = binder_thread_write(proc, thread,
                      bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
            ...
        }
    
        if (bwr.read_size > 0) { //此时读缓存无数据
            ...
        }
    
        if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { //将内核数据bwr拷贝到用户空间ubuf
            ret = -EFAULT;
            goto out;
        }
    out:
        return ret;
    }
    

    此处将用户空间的binder_write_read结构体 拷贝到内核空间.

    2.4.4 binder_thread_write

    [-> kernel/drivers/android/binder.c]

    static int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, binder_uintptr_t binder_buffer, size_t size, binder_size_t *consumed) {
      uint32_t cmd;
      void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
      void __user *ptr = buffer + *consumed;
      void __user *end = buffer + size;
      
      while (ptr < end && thread->return_error == BR_OK) {
        get_user(cmd, (uint32_t __user *)ptr); //获取命令
        switch (cmd) {
          case BC_ENTER_LOOPER:
              //设置该线程的looper状态
              thread->looper |= BINDER_LOOPER_STATE_ENTERED;
              break;
          case ...;
        }
      }    }
    

    从bwr.write_buffer拿出cmd数据,此处为BC_ENTER_LOOPER. 可见上层本次调用binder_write()方法,主要是完成设置当前线程的looper状态为BINDER_LOOPER_STATE_ENTERED。

    2.5 binder_parse

    [-> servicemanager/binder.c]

    int binder_parse(struct binder_state *bs, struct binder_io *bio,
                     uintptr_t ptr, size_t size, binder_handler func)
    {
        int r = 1;
        uintptr_t end = ptr + (uintptr_t) size;
    
        while (ptr < end) {
            uint32_t cmd = *(uint32_t *) ptr;
            ptr += sizeof(uint32_t);
            switch(cmd) {
            case BR_NOOP:  //无操作,退出循环
                break;
            case BR_TRANSACTION_COMPLETE:
                break;
            case BR_INCREFS:
            case BR_ACQUIRE:
            case BR_RELEASE:
            case BR_DECREFS:
                ptr += sizeof(struct binder_ptr_cookie);
                break;
            case BR_TRANSACTION: {
                struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
                ...
                binder_dump_txn(txn);
                if (func) {
                    unsigned rdata[256/4];
                    struct binder_io msg; 
                    struct binder_io reply;
                    int res;
                    //【见小节2.5.1】
                    bio_init(&reply, rdata, sizeof(rdata), 4);
                    bio_init_from_txn(&msg, txn); //从txn解析出binder_io信息
                     //【见小节2.6】
                    res = func(bs, txn, &msg, &reply);
                    //【见小节3.4】
                    binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
                }
                ptr += sizeof(*txn);
                break;
            }
            case BR_REPLY: {
                struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
                ...
                binder_dump_txn(txn);
                if (bio) {
                    bio_init_from_txn(bio, txn);
                    bio = 0;
                }
                ptr += sizeof(*txn);
                r = 0;
                break;
            }
            case BR_DEAD_BINDER: {
                struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;
                ptr += sizeof(binder_uintptr_t);
                // binder死亡消息【见小节3.3】
                death->func(bs, death->ptr);
                break;
            }
            case BR_FAILED_REPLY:
                r = -1;
                break;
            case BR_DEAD_REPLY:
                r = -1;
                break;
            default:
                return -1;
            }
        }
        return r;
    }
    

    解析binder信息,此处参数ptr指向BC_ENTER_LOOPER,func指向svcmgr_handler。故有请求到来,则调用svcmgr_handler。

    2.5.1 bio_init

    [-> servicemanager/binder.c]

    void bio_init(struct binder_io *bio, void *data,
                  size_t maxdata, size_t maxoffs)
    {
        size_t n = maxoffs * sizeof(size_t);
        if (n > maxdata) {
            ...
        }
    
        bio->data = bio->data0 = (char *) data + n;
        bio->offs = bio->offs0 = data;
        bio->data_avail = maxdata - n;
        bio->offs_avail = maxoffs;
        bio->flags = 0;
    }
    

    其中

    struct binder_io
    {
        char *data;            /* pointer to read/write from */
        binder_size_t *offs;   /* array of offsets */
        size_t data_avail;     /* bytes available in data buffer */
        size_t offs_avail;     /* entries available in offsets array */
    
        char *data0;           //data buffer起点位置
        binder_size_t *offs0;  //buffer偏移量的起点位置
        uint32_t flags;
        uint32_t unused;
    };
    

    2.5.2 bio_init_from_txn

    [-> servicemanager/binder.c]

    void bio_init_from_txn(struct binder_io *bio, struct binder_transaction_data *txn)
    {
        bio->data = bio->data0 = (char *)(intptr_t)txn->data.ptr.buffer;
        bio->offs = bio->offs0 = (binder_size_t *)(intptr_t)txn->data.ptr.offsets;
        bio->data_avail = txn->data_size;
        bio->offs_avail = txn->offsets_size / sizeof(size_t);
        bio->flags = BIO_F_SHARED;
    }
    

    将readbuf的数据赋给bio对象的data

    2.6 svcmgr_handler

    [-> service_manager.c]

    int svcmgr_handler(struct binder_state *bs,
                       struct binder_transaction_data *txn,
                       struct binder_io *msg,
                       struct binder_io *reply)
    {
        struct svcinfo *si; //【见小节2.6.1】
        uint16_t *s;
        size_t len;
        uint32_t handle;
        uint32_t strict_policy;
        int allow_isolated;
        ...
        
        strict_policy = bio_get_uint32(msg);
        s = bio_get_string16(msg, &len);
        ...
    
        switch(txn->code) {
        case SVC_MGR_GET_SERVICE:
        case SVC_MGR_CHECK_SERVICE: 
            s = bio_get_string16(msg, &len); //服务名
            //根据名称查找相应服务 【见小节3.1】
            handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid);
            //【见小节3.1.2】
            bio_put_ref(reply, handle);
            return 0;
    
        case SVC_MGR_ADD_SERVICE: 
            s = bio_get_string16(msg, &len); //服务名
            handle = bio_get_ref(msg); //handle【见小节3.2.3】
            allow_isolated = bio_get_uint32(msg) ? 1 : 0;
             //注册指定服务 【见小节3.2】
            if (do_add_service(bs, s, len, handle, txn->sender_euid,
                allow_isolated, txn->sender_pid))
                return -1;
            break;
    
        case SVC_MGR_LIST_SERVICES: {  
            uint32_t n = bio_get_uint32(msg);
    
            if (!svc_can_list(txn->sender_pid)) {
                return -1;
            }
            si = svclist;
            while ((n-- > 0) && si)
                si = si->next;
            if (si) {
                bio_put_string16(reply, si->name);
                return 0;
            }
            return -1;
        }
        default:
            return -1;
        }
    
        bio_put_uint32(reply, 0);
        return 0;
    }
    

    该方法的功能:查询服务,注册服务,以及列举所有服务

    2.6.1 svcinfo

    struct svcinfo
    {
        struct svcinfo *next;
        uint32_t handle; //服务的handle值
        struct binder_death death;
        int allow_isolated;
        size_t len; //名字长度
        uint16_t name[0]; //服务名
    };
    

    每一个服务用svcinfo结构体来表示,该handle值是在注册服务的过程中,由服务所在进程那一端所确定的。

    三. 核心工作

    servicemanager的核心工作就是注册服务和查询服务。

    3.1 do_find_service

    [-> service_manager.c]

    uint32_t do_find_service(struct binder_state *bs, const uint16_t *s, size_t len, uid_t uid, pid_t spid)
    {
        //查询相应的服务 【见小节3.1.1】
        struct svcinfo *si = find_svc(s, len);
    
        if (!si || !si->handle) {
            return 0;
        }
    
        if (!si->allow_isolated) {
            uid_t appid = uid % AID_USER;
            //检查该服务是否允许孤立于进程而单独存在
            if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) {
                return 0;
            }
        }
    
        //服务是否满足查询条件
        if (!svc_can_find(s, len, spid)) {
            return 0;
        }
        return si->handle;
    }
    

    查询到目标服务,并返回该服务所对应的handle

    3.1.1 find_svc

    struct svcinfo *find_svc(const uint16_t *s16, size_t len)
    {
        struct svcinfo *si;
    
        for (si = svclist; si; si = si->next) {
            //当名字完全一致,则返回查询到的结果
            if ((len == si->len) &&
                !memcmp(s16, si->name, len * sizeof(uint16_t))) {
                return si;
            }
        }
        return NULL;
    }
    

    从svclist服务列表中,根据服务名遍历查找是否已经注册。当服务已存在svclist,则返回相应的服务名,否则返回NULL。

    当找到服务的handle, 则调用bio_put_ref(reply, handle),将handle封装到reply.

    3.1.2 bio_put_ref

    void bio_put_ref(struct binder_io *bio, uint32_t handle)
    {
        struct flat_binder_object *obj;
    
        if (handle)
            obj = bio_alloc_obj(bio); //[见小节3.1.3]
        else
            obj = bio_alloc(bio, sizeof(*obj));
    
        if (!obj)
            return;
    
        obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
        obj->type = BINDER_TYPE_HANDLE; //返回的是HANDLE类型
        obj->handle = handle;
        obj->cookie = 0;
    }
    

    3.1.3 bio_alloc_obj

    static struct flat_binder_object *bio_alloc_obj(struct binder_io *bio)
    {
        struct flat_binder_object *obj;
        obj = bio_alloc(bio, sizeof(*obj));//[见小节3.1.4]
    
        if (obj && bio->offs_avail) {
            bio->offs_avail--;
            *bio->offs++ = ((char*) obj) - ((char*) bio->data0);
            return obj;
        }
        bio->flags |= BIO_F_OVERFLOW;
        return NULL;
    }
    

    3.1.4 bio_alloc

    static void *bio_alloc(struct binder_io *bio, size_t size)
    {
        size = (size + 3) & (~3);
        if (size > bio->data_avail) {
            bio->flags |= BIO_F_OVERFLOW;
            return NULL;
        } else {
            void *ptr = bio->data;
            bio->data += size;
            bio->data_avail -= size;
            return ptr;
        }
    }
    

    3.2 do_add_service

    [-> service_manager.c]

    int do_add_service(struct binder_state *bs,
                       const uint16_t *s, size_t len,
                       uint32_t handle, uid_t uid, int allow_isolated,
                       pid_t spid)
    {
        struct svcinfo *si;
    
        if (!handle || (len == 0) || (len > 127))
            return -1;
    
        //权限检查【见小节3.2.1】
        if (!svc_can_register(s, len, spid)) {
            return -1;
        }
    
        //服务检索【见小节3.1.1】
        si = find_svc(s, len);
        if (si) {
            if (si->handle) {
                svcinfo_death(bs, si); //服务已注册时,释放相应的服务【见小节3.2.2】
            }
            si->handle = handle;
        } else {
            si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t));
            if (!si) {  //内存不足,无法分配足够内存
                return -1;
            }
            si->handle = handle;
            si->len = len;
            memcpy(si->name, s, (len + 1) * sizeof(uint16_t)); //内存拷贝服务信息
            si->name[len] = '';
            si->death.func = (void*) svcinfo_death;
            si->death.ptr = si;
            si->allow_isolated = allow_isolated;
            si->next = svclist; // svclist保存所有已注册的服务
            svclist = si;
        }
    
        //以BC_ACQUIRE命令,handle为目标的信息,通过ioctl发送给binder驱动
        binder_acquire(bs, handle);
        //以BC_REQUEST_DEATH_NOTIFICATION命令的信息,通过ioctl发送给binder驱动,主要用于清理内存等收尾工作。[见小节3.3]
        binder_link_to_death(bs, handle, &si->death);
        return 0;
    }
    

    注册服务的分以下3部分工作:

    • svc_can_register:检查权限,检查selinux权限是否满足;
    • find_svc:服务检索,根据服务名来查询匹配的服务;
    • svcinfo_death:释放服务,当查询到已存在同名的服务,则先清理该服务信息,再将当前的服务加入到服务列表svclist;

    3.2.1 svc_can_register

    [-> service_manager.c]

    static int svc_can_register(const uint16_t *name, size_t name_len, pid_t spid) {
        const char *perm = "add";
        //检查selinux权限是否满足
        return check_mac_perms_from_lookup(spid, perm, str8(name, name_len)) ? 1 : 0;
    }
    

    3.2.2 svcinfo_death

    [-> service_manager.c]

    void svcinfo_death(struct binder_state *bs, void *ptr)
    {
        struct svcinfo *si = (struct svcinfo* ) ptr;
    
        if (si->handle) {
            binder_release(bs, si->handle);
            si->handle = 0;
        }
    }
    

    3.2.3 bio_get_ref

    [-> servicemanager/binder.c]

    uint32_t bio_get_ref(struct binder_io *bio)
    {
        struct flat_binder_object *obj;
    
        obj = _bio_get_obj(bio);
        if (!obj)
            return 0;
    
        if (obj->type == BINDER_TYPE_HANDLE)
            return obj->handle;
    
        return 0;
    }
    

    [-> servicemanager/binder.c]

    void binder_link_to_death(struct binder_state *bs, uint32_t target, struct binder_death *death) {
        struct {
            uint32_t cmd;
            struct binder_handle_cookie payload;
        } __attribute__((packed)) data;
    
        data.cmd = BC_REQUEST_DEATH_NOTIFICATION;
        data.payload.handle = target;
        data.payload.cookie = (uintptr_t) death;
        binder_write(bs, &data, sizeof(data)); //[见小节3.3.1]
    }
    

    binder_write经过跟小节2.4.1一样的方式, 进入Binder driver后,直接调用后进入binder_thread_write, 处理BC_REQUEST_DEATH_NOTIFICATION命令

    3.3.1 binder_ioctl_write_read

    [-> kernel/drivers/android/binder.c]

    static int binder_ioctl_write_read(struct file *filp,
                    unsigned int cmd, unsigned long arg,
                    struct binder_thread *thread)
    {
        int ret = 0;
        struct binder_proc *proc = filp->private_data;
        void __user *ubuf = (void __user *)arg;
        struct binder_write_read bwr;
    
        if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { //把用户空间数据ubuf拷贝到bwr
            ret = -EFAULT;
            goto out;
        }
        if (bwr.write_size > 0) { //此时写缓存有数据【见小节3.3.2】
            ret = binder_thread_write(proc, thread,
                      bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
             if (ret < 0) {
                  bwr.read_consumed = 0;
                  if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
                      ret = -EFAULT;
                  goto out;
              }
        }
    
        if (bwr.read_size > 0) { //此时读缓存有数据【见小节3.3.3】
            ret = binder_thread_read(proc, thread, bwr.read_buffer,
                     bwr.read_size,
                     &bwr.read_consumed,
                     filp->f_flags & O_NONBLOCK);
            if (!list_empty(&proc->todo))  //进程todo队列不为空,则唤醒该队列中的线程
                wake_up_interruptible(&proc->wait);
            if (ret < 0) {
                if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
                    ret = -EFAULT;
                goto out;
            }
        }
    
        if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { //将内核数据bwr拷贝到用户空间ubuf
            ret = -EFAULT;
            goto out;
        }
    out:
        return ret;
    }
    

    3.3.2 binder_thread_write

    [-> kernel/drivers/android/binder.c]

    static int binder_thread_write(struct binder_proc *proc,
          struct binder_thread *thread,
          binder_uintptr_t binder_buffer, size_t size,
          binder_size_t *consumed)
    {
      uint32_t cmd;
      struct binder_context *context = proc->context;
      void __user *buffer = (void __user *)(uintptr_t)binder_buffer;
      void __user *ptr = buffer + *consumed; //ptr指向小节3.2.3中bwr中write_buffer的data.
      void __user *end = buffer + size;
      while (ptr < end && thread->return_error == BR_OK) {
        get_user(cmd, (uint32_t __user *)ptr); //获取BC_REQUEST_DEATH_NOTIFICATION
        ptr += sizeof(uint32_t);
        switch (cmd) {
            case BC_REQUEST_DEATH_NOTIFICATION:{ //注册死亡通知
                uint32_t target;
                void __user *cookie;
                struct binder_ref *ref;
                struct binder_ref_death *death;
    
                get_user(target, (uint32_t __user *)ptr); //获取target
                ptr += sizeof(uint32_t);
                get_user(cookie, (void __user * __user *)ptr); //获取death
                ptr += sizeof(void *);
    
                ref = binder_get_ref(proc, target); //拿到目标服务的binder_ref
    
                if (cmd == BC_REQUEST_DEATH_NOTIFICATION) {
                    if (ref->death) {
                        break;  //已设置死亡通知
                    }
                    death = kzalloc(sizeof(*death), GFP_KERNEL);
    
                    INIT_LIST_HEAD(&death->work.entry);
                    death->cookie = cookie;
                    ref->death = death;
                    if (ref->node->proc == NULL) { //当目标binder服务所在进程已死,则发送死亡通知
                        ref->death->work.type = BINDER_WORK_DEAD_BINDER;
                        //当前线程为binder线程,则直接添加到当前线程的todo队列. 接下来,进入[小节3.2.6]
                        if (thread->looper & (BINDER_LOOPER_STATE_REGISTERED | BINDER_LOOPER_STATE_ENTERED)) {
                            list_add_tail(&ref->death->work.entry, &thread->todo);
                        } else {
                            list_add_tail(&ref->death->work.entry, &proc->todo);
                            wake_up_interruptible(&proc->wait);
                        }
                    }
                } else {
                    ...
                }
            } break;
          case ...;
        }
        *consumed = ptr - buffer;
      }
    }
    

    此方法中的proc, thread都是指当前servicemanager进程的信息. 此时TODO队列有数据,则进入binder_thread_read.

    那么哪些场景会向队列增加BINDER_WORK_DEAD_BINDER事务呢? 那就是当binder所在进程死亡后,会调用binder_release方法, 然后调用binder_node_release.这个过程便会发出死亡通知的回调.

    3.3.3 binder_thread_read

    static int binder_thread_read(struct binder_proc *proc,
                      struct binder_thread *thread,
                      binder_uintptr_t binder_buffer, size_t size,
                      binder_size_t *consumed, int non_block)
        ...
        //只有当前线程todo队列为空,并且transaction_stack也为空,才会开始处于当前进程的事务
        if (wait_for_proc_work) {
            ...
            ret = wait_event_freezable_exclusive(proc->wait, binder_has_proc_work(proc, thread));
        } else {
            ...
            ret = wait_event_freezable(thread->wait, binder_has_thread_work(thread));
        }
        binder_lock(__func__); //加锁
    
        if (wait_for_proc_work)
            proc->ready_threads--; //空闲的binder线程减1
        thread->looper &= ~BINDER_LOOPER_STATE_WAITING;
    
        while (1) {
            uint32_t cmd;
            struct binder_transaction_data tr;
            struct binder_work *w;
            struct binder_transaction *t = NULL;
    
            //从todo队列拿出前面放入的binder_work, 此时type为BINDER_WORK_DEAD_BINDER
            if (!list_empty(&thread->todo)) {
                w = list_first_entry(&thread->todo, struct binder_work,
                             entry);
            } else if (!list_empty(&proc->todo) && wait_for_proc_work) {
                w = list_first_entry(&proc->todo, struct binder_work,
                             entry);
            }
    
            switch (w->type) {
                case BINDER_WORK_DEAD_BINDER: {
                  struct binder_ref_death *death;
                  uint32_t cmd;
    
                  death = container_of(w, struct binder_ref_death, work);
                  if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION)
                      ...
                  else
                      cmd = BR_DEAD_BINDER; //进入此分支
                  put_user(cmd, (uint32_t __user *)ptr);//拷贝到用户空间[见小节3.3.4]
                  ptr += sizeof(uint32_t);
    
                  //此处的cookie是前面传递的svcinfo_death
                  put_user(death->cookie, (binder_uintptr_t __user *)ptr);
                  ptr += sizeof(binder_uintptr_t);
    
                  if (w->type == BINDER_WORK_CLEAR_DEATH_NOTIFICATION) {
                      ...
                  } else
                      list_move(&w->entry, &proc->delivered_death);
                  if (cmd == BR_DEAD_BINDER)
                      goto done;
                } break;
            }
        }
        ...
        return 0;
    }
    

    将命令BR_DEAD_BINDER写到用户空间, 此处的cookie是前面传递的svcinfo_death. 当binder_loop下一次 执行binder_parse的过程便会处理该消息。

    3.3.4 binder_parse

    [-> servicemanager/binder.c]

    int binder_parse(struct binder_state *bs, struct binder_io *bio, uintptr_t ptr, size_t size, binder_handler func) {
        int r = 1;
        uintptr_t end = ptr + (uintptr_t) size;
    
        while (ptr < end) {
            uint32_t cmd = *(uint32_t *) ptr;
            ptr += sizeof(uint32_t);
            switch(cmd) {
                case BR_DEAD_BINDER: {
                    struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;
                    ptr += sizeof(binder_uintptr_t);
                    // binder死亡消息【见小节3.3.5】
                    death->func(bs, death->ptr);
                    break;
                }
                ...
            }
        }
        return r;
    }
    

    由小节3.2的 si->death.func = (void*) svcinfo_death; 可知此处 death->func便是执行svcinfo_death()方法.

    3.3.5 svcinfo_death

    [-> service_manager.c]

    void svcinfo_death(struct binder_state *bs, void *ptr)
    {
        struct svcinfo *si = (struct svcinfo* ) ptr;
    
        if (si->handle) {
            binder_release(bs, si->handle);
            si->handle = 0;
        }
    }
    

    3.3.6 binder_release

    [-> service_manager.c]

    void binder_release(struct binder_state *bs, uint32_t target) {
        uint32_t cmd[2];
        cmd[0] = BC_RELEASE;
        cmd[1] = target;
        binder_write(bs, cmd, sizeof(cmd));
    }
    

    向Binder Driver写入BC_RELEASE命令, 最终进入Binder Driver后执行binder_dec_ref(ref, 1)来减少binder node的引用.

    3.4 binder_send_reply

    [-> servicemanager/binder.c]

    void binder_send_reply(struct binder_state *bs, struct binder_io *reply, binder_uintptr_t buffer_to_free, int status) {
        struct {
            uint32_t cmd_free;
            binder_uintptr_t buffer;
            uint32_t cmd_reply;
            struct binder_transaction_data txn;
        } __attribute__((packed)) data;
    
        data.cmd_free = BC_FREE_BUFFER; //free buffer命令
        data.buffer = buffer_to_free;
        data.cmd_reply = BC_REPLY; // reply命令
        data.txn.target.ptr = 0;
        data.txn.cookie = 0;
        data.txn.code = 0;
        if (status) {
            data.txn.flags = TF_STATUS_CODE;
            data.txn.data_size = sizeof(int);
            data.txn.offsets_size = 0;
            data.txn.data.ptr.buffer = (uintptr_t)&status;
            data.txn.data.ptr.offsets = 0;
        } else {
            data.txn.flags = 0;
            data.txn.data_size = reply->data - reply->data0;
            data.txn.offsets_size = ((char*) reply->offs) - ((char*) reply->offs0);
            data.txn.data.ptr.buffer = (uintptr_t)reply->data0;
            data.txn.data.ptr.offsets = (uintptr_t)reply->offs0;
        }
        //向Binder驱动通信
        binder_write(bs, &data, sizeof(data));
    }
    

    当小节2.5执行binder_parse方法,先调用svcmgr_handler(),再然后执行binder_send_reply过程。该方法会调用 [小节2.4.1] binder_write进入binder驱动后,将BC_FREE_BUFFER和BC_REPLY命令协议发送给Binder驱动,向client端发送reply. 其中data的数据区中保存的是TYPE为HANDLE.

    四. 总结

    ServiceManger集中管理系统内的所有服务,通过权限控制进程是否有权注册服务,通过字符串名称来查找对应的Service; 由于ServiceManger进程建立跟所有向其注册服务的死亡通知, 那么当服务所在进程死亡后, 会只需告知ServiceManager. 每个Client通过查询ServiceManager可获取Server进程的情况,降低所有Client进程直接检测会导致负载过重。

    ServiceManager启动流程:

    1. 打开binder驱动,并调用mmap()方法分配128k的内存映射空间:binder_open();
    2. 通知binder驱动使其成为守护进程:binder_become_context_manager();
    3. 验证selinux权限,判断进程是否有权注册或查看指定服务;
    4. 进入循环状态,等待Client端的请求:binder_loop()。
    5. 注册服务的过程,根据服务名称,但同一个服务已注册,重新注册前会先移除之前的注册信息;
    6. 死亡通知: 当binder所在进程死亡后,会调用binder_release方法,然后调用binder_node_release.这个过程便会发出死亡通知的回调.

    ServiceManager最核心的两个功能为查询和注册服务:

    • 注册服务:记录服务名和handle信息,保存到svclist列表;
    • 查询服务:根据服务名查询相应的的handle信息。
    Always Believe Something Beauitful Will Be Happen
  • 相关阅读:
    pip python代码
    Saltstack module http 详解
    Saltstack module hosts 详解
    Saltstack module highstate_doc 详解
    Saltstack module hashutil 详解
    Saltstack module group 详解
    Saltstack module grains 详解
    Saltstack module grafana4 详解
    Saltstack module google_chat 详解
    Saltstack module gnome 详解
  • 原文地址:https://www.cnblogs.com/Oude/p/12363359.html
Copyright © 2020-2023  润新知