变量的恢复可按照两种方式导入:
saver=tf.train.Saver() saver.restore(sess,'model.ckpt')
或者:
saver=tf.train.import_meta_graph(r'D: mp ensorflowmnistmodel.ckpt.meta') saver.restore(sess,'model.ckpt')
两种方法的效果应该一致,但是实际结果不一样:
使用前者时预测结果是一致的;使用后者时,每次运行结果都不一致。无论是否重启spyde,现象都一样。
在使用前者时,必须在运行前重启spyde,否则会报错,为什么?Out_1等参数会随运行次数增加
INFO:tensorflow:Restoring parameters from D:/tmp/tensorflow/mnist/model.ckpt Traceback (most recent call last): File "<ipython-input-2-61410824b24c>", line 1, in <module> runfile('D:/wangjc/pythonTest/TensorFlow/TestMNIST_Predict.py', wdir='D:/wangjc/pythonTest/TensorFlow') ...... File "D:softwareanacondaenvs ensorflowlibsite-packages ensorflowpythonclientsession.py", line 1052, in _do_call raise type(e)(node_def, op, message) NotFoundError: Key out_1/bias/bias not found in checkpoint [[Node: save_1/RestoreV2_14 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_14/tensor_names, save_1/RestoreV2_14/shape_and_slices)]] Caused by op 'save_1/RestoreV2_14', defined at: File "D:softwareanacondaenvs ensorflowlibsite-packagesspyderutilsipythonstart_kernel.py", line 241, in <module> main() ......File "D:softwareanacondaenvs ensorflowlibsite-packages ensorflowpythonframeworkops.py", line 1228, in __init__ self._traceback = _extract_stack() NotFoundError (see above for traceback): Key out_1/bias/bias not found in checkpoint [[Node: save_1/RestoreV2_14 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_1/Const_0, save_1/RestoreV2_14/tensor_names, save_1/RestoreV2_14/shape_and_slices)]]
NotFoundError: Key out_2/weight/weight not found in checkpoint [[Node: save_2/RestoreV2_23 = RestoreV2[dtypes=[DT_FLOAT], _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save_2/Const_0, save_2/RestoreV2_23/tensor_names, save_2/RestoreV2_23/shape_and_slices)]] Caused by op 'save_2/RestoreV2_23', defined at:
以上需要重启spyder的原因为saver恢复一次之后不能再次恢复,否则报错。
导致saver=tf.train.Saver()与saver=tf.train.import_meta_graph(r'D: mp ensorflowmnistmodel.ckpt.meta')结果不同的原因是,后者在使用中可直接加载模型的参数,操作数等。
tf.get_default_graph()获取图
.get_tensor_by_name()获取张量
.get_operation_by_name()获取操作
注意对各部分命名。
使用下面方法的效果与直接读ckpt文件一致
saver = tf.train.Saver() ckpt=tf.train.get_checkpoint_state(r'D: mp ensorflowmnist') saver.restore(sess, ckpt.model_checkpoint_path)
可使用tf.get_collection('name')来读取恢复的变量
注意定义变量时最好标注标量名称,否则可能出现预测时加载参数不正确,定义方法为:
def weight_variable(shape): #use normal distribution numbers with stddev 0.1 to initial the weight initial=tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial,name='weight')
-------------------------------------------------------------------------------------------------------------------------------
训练并保存模型 代码
# -*- coding: utf-8 -*- """ Created on Mon Sep 11 10:16:34 2017 multy layers softmax regression @author: Wangjc """ import tensorflow as tf import os import tensorflow.examples.tutorials.mnist.input_data as input_data #need to show the full address, or error occus. mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #use read_data_sets to download and load the mnist data set. if has the data, then load. #need a long time about 5 minutes sess = tf.InteractiveSession() #link the back-end of C++ to compute. #in norm cases, we should create the map and then run in the sussion. #now, use a more convenient class named InteractiveSession which could insert compute map when running map. x=tf.placeholder("float",shape=[None,784]) y_=tf.placeholder("float",shape=[None,10]) def weight_variable(shape): #use normal distribution numbers with stddev 0.1 to initial the weight initial=tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial,name='weight') def bias_variable(shape): #use constant value of 0.1 to initial the bias initial=tf.constant(0.1, shape=shape) return tf.Variable(initial,name='bias') def conv2d(x,W): #convolution by filter of W,with step size of 1, 0 padding size #x should have the dimension of [batch,height,width,channels] #other dimension of strides or ksize is the same with x return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') def max_pool_2x2(x): #pool by windows of ksize,with step size of 2, 0 padding size return tf.nn.max_pool(x,ksize=[1,2,2,1], strides=[1,2,2,1],padding='SAME') #------------------------------------------------ x_image = tf.reshape(x, [-1,28,28,1]) #to use conv1, need to convert x to 4D, in form of [batch,height,width,channels] # -1 means default with tf.name_scope('conv1'): #use 'with' and name_scope to define a name space which will show in tensorboard as a ragion with tf.name_scope('weight'): W_conv1=weight_variable([5,5,1,32]) tf.summary.histogram('conv1'+'/weight',W_conv1) #summary the variation ('name', value) with tf.name_scope('bias'): b_conv1=bias_variable([32]) tf.summary.histogram('conv1'+'/bias',b_conv1) #build the first conv layer: #get 32 features from every 5*5 patch, so the shape is [5,5,1(channel),32] h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) with tf.name_scope('pool1'): h_pool1 = max_pool_2x2(h_conv1) #-------------------------------------------- with tf.name_scope('conv2'): with tf.name_scope('weight'): W_conv2=weight_variable([5,5,32,64]) tf.summary.histogram('weight',W_conv2) with tf.name_scope('bias'): b_conv2=bias_variable([64]) tf.summary.histogram('bias',b_conv2) #build the 2nd conv layer: #get 64 features from every 5*5 patch, so the shape is [5,5,32(channel),64] h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) with tf.name_scope('pool2'): h_pool2 = max_pool_2x2(h_conv2) #---------------------------------------- #image size reduce to 7*7 by pooling #we add a full connect layer contains 1027 nuere #need to flat pool tensor for caculate with tf.name_scope('fc1'): with tf.name_scope('weight'): W_fc1 = weight_variable([7*7*64, 1024]) tf.summary.histogram('weight',W_fc1) with tf.name_scope('bias'): b_fc1 = bias_variable([1024]) tf.summary.histogram('bias',b_fc1) h_pool2_flat = tf.reshape(h_pool2,[-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1) #------------------------------------ #output layer with tf.name_scope('out'): keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #to decrease overfit, we add dropout before output layer. #use placeholder to represent the porbability of a neure's output value unchange with tf.name_scope('weight'): W_fc2 = weight_variable([1024, 10]) tf.summary.histogram('weight',W_fc2) with tf.name_scope('bias'): b_fc2 = bias_variable([10]) tf.summary.histogram('bias',b_fc2) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #--------------------------------- #train and evaluate the module #use a ADAM cross_entropy=-tf.reduce_sum(y_*tf.log(y_conv)) tf.summary.scalar('cross_entropy',cross_entropy) ##summary the constant ('name', value) train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #sess = tf.Session() merged=tf.summary.merge_all() #merge all the summary nodes writer=tf.summary.FileWriter('D:/tmp/tensorflow/mnist/',sess.graph) # assign the event file write directory saver=tf.train.Saver() #saver for variation.Dafault to save all. checkpoint_file = os.path.join('D:/tmp/tensorflow/mnist/', 'model.ckpt') #save directroy for variation sess.run(tf.global_variables_initializer()) for i in range(100): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1],keep_prob:1.0}) # saver.save(sess,checkpoint_file) # saver.save(sess,checkpoint_file,global_step=i) #save variation print("step %d, training accuracy %g"%(i, train_accuracy)) result=sess.run(merged,feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) #the merged summary need to be run writer.add_summary(result,i) #add the result to summary train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) saver.save(sess,checkpoint_file)
读取图片,恢复参数并预测 代码
# -*- coding: utf-8 -*- """ Created on Mon Sep 11 10:16:34 2017 multy layers softmax regression @author: Wangjc """ import tensorflow as tf import os import cv2 import matplotlib.pyplot as plt #need to show the full address, or error occus. imgs0=cv2.imread(r'D: mp ensorflowimgs\_1.png',0) plt.imshow(imgs0) plt.show() imgs=imgs0/255 #imgs=(255-imgs0)/255 imgs.shape=(1,784) sess = tf.InteractiveSession() #link the back-end of C++ to compute. #in norm cases, we should create the map and then run in the sussion. #now, use a more convenient class named InteractiveSession which could insert compute map when running map. x=tf.placeholder("float",shape=[None,784]) def weight_variable(shape): #use normal distribution numbers with stddev 0.1 to initial the weight initial=tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial,name='weight') def bias_variable(shape): #use constant value of 0.1 to initial the bias initial=tf.constant(0.1, shape=shape) return tf.Variable(initial,name='bias') def conv2d(x,W): #convolution by filter of W,with step size of 1, 0 padding size #x should have the dimension of [batch,height,width,channels] #other dimension of strides or ksize is the same with x return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') def max_pool_2x2(x): #pool by windows of ksize,with step size of 2, 0 padding size return tf.nn.max_pool(x,ksize=[1,2,2,1], strides=[1,2,2,1],padding='SAME') #------------------------------------------------ x_image = tf.reshape(x, [-1,28,28,1]) #to use conv1, need to convert x to 4D, in form of [batch,height,width,channels] # -1 means default with tf.name_scope('conv1'): #use 'with' and name_scope to define a name space which will show in tensorboard as a ragion with tf.name_scope('weight'): W_conv1=weight_variable([5,5,1,32]) # tf.summary.histogram('conv1'+'/weight',W_conv1) #summary the variation ('name', value) with tf.name_scope('bias'): b_conv1=bias_variable([32]) # tf.summary.histogram('conv1'+'/bias',b_conv1) #build the first conv layer: #get 32 features from every 5*5 patch, so the shape is [5,5,1(channel),32] h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) with tf.name_scope('pool1'): h_pool1 = max_pool_2x2(h_conv1) #-------------------------------------------- with tf.name_scope('conv2'): with tf.name_scope('weight'): W_conv2=weight_variable([5,5,32,64]) # tf.summary.histogram('weight',W_conv2) with tf.name_scope('bias'): b_conv2=bias_variable([64]) # tf.summary.histogram('bias',b_conv2) #build the 2nd conv layer: #get 64 features from every 5*5 patch, so the shape is [5,5,32(channel),64] h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) with tf.name_scope('pool2'): h_pool2 = max_pool_2x2(h_conv2) #---------------------------------------- #image size reduce to 7*7 by pooling #we add a full connect layer contains 1027 nuere #need to flat pool tensor for caculate with tf.name_scope('fc1'): with tf.name_scope('weight'): W_fc1 = weight_variable([7*7*64, 1024]) # tf.summary.histogram('weight',W_fc1) with tf.name_scope('bias'): b_fc1 = bias_variable([1024]) # tf.summary.histogram('bias',b_fc1) h_pool2_flat = tf.reshape(h_pool2,[-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1) #------------------------------------ #output layer with tf.name_scope('out'): keep_prob = tf.placeholder("float") # h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) #to decrease overfit, we add dropout before output layer. #use placeholder to represent the porbability of a neure's output value unchange with tf.name_scope('weight'): W_fc2 = weight_variable([1024, 10]) # tf.summary.histogram('weight',W_fc2) with tf.name_scope('bias'): b_fc2 = bias_variable([10]) # tf.summary.histogram('bias',b_fc2) y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2) #--------------------------------- #saver=tf.train.import_meta_graph(r'D: mp ensorflowmnistmodel.ckpt.meta') saver=tf.train.Saver() #saver for variation.Dafault to save all. checkpoint_file = os.path.join('D:/tmp/tensorflow/mnist/', 'model.ckpt') #save directroy for variation sess.run(tf.global_variables_initializer()) saver.restore(sess,checkpoint_file) #saver.recover_last_checkpoints(checkpoint_file) #prediction=tf.argmax(y_conv,1) #result=prediction.eval(feed_dict={x: imgs}) result=sess.run(tf.argmax(y_conv,1),feed_dict={x: imgs,keep_prob: 0.5}) #result=prediction.eval(feed_dict={x: imgs,keep_prob: 0.5}) print('recognize result') print(result[0])