• TensorFlow入门:TensorBoard使用(No scalar data was found的问题)


    1.输入命令开启TensorBoard:

    (tensorflow) C:UsersIRay>python D:softwareanacondaenvs	ensorflowLibsite-packages	ensorflow	ensorboard	ensorboard.py --logdir=D:	mp	ensorflowmnistlogsfully_connected_feed

    2.如果安装了TensorBoard,可以直接使用命令:

    (tensorflow) C:UsersIRay>tensorboard --logdir=D:	mp	ensorflowmnistlogsfully_connected_feed

    3.输入命令后,结果显示:

    Starting TensorBoard b'47' at http://0.0.0.0:6006
    (Press CTRL+C to quit)

    4.此时,到网页上输入地址即可打开,有可能出现意外(IE解析问题),则使用如下地址打开:

    http://localhost:6006/

    如果发现网页显示 “No scalar data was found”等信息,说明未正确打开记录文件。

    需要将terminal的工作路径修改到events log files所在路径,同时注意:logdir=后面所接的文件路径不需要引号(可以使用双引号,单引号会出错)

    (tensorflow) C:UsersIRay>D:
    
    (tensorflow) D:>tensorboard --logdir=D:	mp	ensorflow

    注意清空spyder(或重启),否则会造成events记录叠加。 

    使用summary设置记录Tensor的代码如下:使用MNIST多层神经网络做例子

    # -*- coding: utf-8 -*-
    """
    Created on Mon Sep 11 10:16:34 2017
    
    multy layers softmax regression
    
    @author: Wangjc
    """
    
    import tensorflow as tf
    import tensorflow.examples.tutorials.mnist.input_data as input_data
    #need to show the full address, or error occus.
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    #use read_data_sets to download and load the mnist data set. if has the data, then load.
    #need a long time about 5 minutes
    
    sess = tf.InteractiveSession()
    #link the back-end of C++ to compute.
    #in norm cases, we should create the map and then run in the sussion.
    #now, use a more convenient class named InteractiveSession which could insert compute map when running map.
    
    x=tf.placeholder("float",shape=[None,784])
    y_=tf.placeholder("float",shape=[None,10])
    
    
    def weight_variable(shape):
        #use normal distribution numbers with stddev 0.1 to initial the weight
        initial=tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
        
    def bias_variable(shape):
        #use constant value of 0.1 to initial the bias
        initial=tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def conv2d(x,W):
        #convolution by filter of W,with step size of 1, 0 padding size
        #x should have the dimension of [batch,height,width,channels]
        #other dimension of strides or ksize is the same with x
        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    
    def max_pool_2x2(x):
        #pool by windows of ksize,with step size of 2, 0 padding size
        return tf.nn.max_pool(x,ksize=[1,2,2,1],
                              strides=[1,2,2,1],padding='SAME')
    
    
    #------------------------------------------------
    x_image = tf.reshape(x, [-1,28,28,1])
    #to use conv1, need to convert x to 4D, in form of [batch,height,width,channels]
    # -1 means default
        
    with tf.name_scope('conv1'):
        #use 'with' and name_scope to define a name space which will show in tensorboard as a ragion
        with tf.name_scope('weight'):
            W_conv1=weight_variable([5,5,1,32])
            tf.summary.histogram('conv1'+'/weight',W_conv1)
            #summary the variation ('name', value) 
        with tf.name_scope('bias'):
            b_conv1=bias_variable([32])
            tf.summary.histogram('conv1'+'/bias',b_conv1)
    #build the first conv layer:
    #get 32 features from every 5*5 patch, so the shape is [5,5,1(channel),32]
    
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    
    with tf.name_scope('pool1'):    
        h_pool1 = max_pool_2x2(h_conv1)
    
    #--------------------------------------------
    with tf.name_scope('conv2'):
        with tf.name_scope('weight'):    
            W_conv2=weight_variable([5,5,32,64])
            tf.summary.histogram('weight',W_conv2)
        with tf.name_scope('bias'):  
            b_conv2=bias_variable([64])
            tf.summary.histogram('bias',b_conv2)
    #build the 2nd conv layer:
    #get 64 features from every 5*5 patch, so the shape is [5,5,32(channel),64]
    
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    with tf.name_scope('pool2'):    
        h_pool2 = max_pool_2x2(h_conv2)
    
    #----------------------------------------
    #image size reduce to 7*7 by pooling
    #we add a full connect layer contains 1027 nuere
    #need to flat pool tensor for caculate
    with tf.name_scope('fc1'):
        with tf.name_scope('weight'):    
            W_fc1 = weight_variable([7*7*64, 1024])
            tf.summary.histogram('weight',W_fc1)
        with tf.name_scope('bias'):
            b_fc1 = bias_variable([1024])
            tf.summary.histogram('bias',b_fc1)
    
        h_pool2_flat = tf.reshape(h_pool2,[-1, 7*7*64])
        
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)
    
    #------------------------------------
    #output layer
    with tf.name_scope('out'):
        keep_prob = tf.placeholder("float")
        h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
    #to decrease overfit, we add dropout before output layer.
    #use placeholder to represent the porbability of a neure's output value unchange
    
        with tf.name_scope('weight'):
            W_fc2 = weight_variable([1024, 10])
            tf.summary.histogram('weight',W_fc2)
        with tf.name_scope('bias'):
            b_fc2 = bias_variable([10])
            tf.summary.histogram('bias',b_fc2)
        y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    #---------------------------------
    #train and evaluate the module
    #use a ADAM
    
    cross_entropy=-tf.reduce_sum(y_*tf.log(y_conv))
    tf.summary.scalar('cross_entropy',cross_entropy)
    ##summary the constant ('name', value) 
    train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    #sess = tf.Session()
    
    merged=tf.summary.merge_all()
    #merge all the summary nodes
    writer=tf.summary.FileWriter('D:/tmp/tensorflow/mnist/',sess.graph)
    # assign the event file write directory 
    
    sess.run(tf.global_variables_initializer())
    for i in range(500):
        batch = mnist.train.next_batch(50)
        if i%100 == 0:
            train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1],keep_prob:1.0})
            print("step %d, training accuracy %g"%(i, train_accuracy))
            result=sess.run(merged,feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
            #the merged summary need to be run
            writer.add_summary(result,i)
            #add the result to summary
        train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
        
    print("test accuracy %g"%accuracy.eval(feed_dict={
            x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
  • 相关阅读:
    说说VNode节点(Vue.js实现)
    从Vue.js源码角度再看数据绑定
    《Cloud Native Infrastructure》CHAPTER 7(3)
    《Cloud Native Infrastructure》CHAPTER 7(2)
    《Cloud Native Infrastructure》CHAPTER 7 (1)
    《Cloud Native Infrastructure》CHAPTER 4(2)
    《Cloud Native Infrastructure》CHAPTER 4(1)
    《Cloud Native Infrastructure》CHAPTER 2(1)
    《Cloud Native Infrastructure》CHAPTER 1(2)
    《Cloud Native Infrastructure》CHAPTER 1(1)
  • 原文地址:https://www.cnblogs.com/Osler/p/7687204.html
Copyright © 2020-2023  润新知