• HDOJ 4582


    题目大意:

    给定一个N个点、M条边的无向图Graph,以及从点1开始进行DFS形成的树Tree,定义"T-Simple Circle"为Graph中的环,要求其中只含一条不属于Tree的边。

    将Graph中的一些边进行染色,使得其中每个T-simple Circle都至少包含一条被染色的边,求最少需要染色的边数。

    N≤2e3,M≤2e4

    本题关键的一点在于Tree是一棵DFS生成树,这样Tree以外的边只可能将某个点与它在Tree中的祖先相连(用反证法可以证明,只有这样才能维持DFS树的性质)。

    也就是说,每条Tree以外的边都相当于在DFS生成树上划定了一条深度单调递增(递减)的链,问题转化为:最少染色多少条边,可以使每条链上都至少有一条边被染色。

    不难发现,对Tree以外的边进行染色的覆盖效率远小于对Tree上的边进行染色,因此只需考虑DFS生成树的边。

    类比直线上的区间选点问题,本题也可以用类似的贪心思路。

    题解:http://blog.csdn.net/sd_invol/article/details/9963741

    直线上区间选点问题的证明:http://blog.csdn.net/dgq8211/article/details/7534776

    C++11代码(貌似HDOJ可以交C++11?):

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <algorithm>
      4 #include <vector>
      5 #include <functional>
      6 
      7 const int maxN = 2000 + 5;
      8 const int maxM = 20000 + 5;
      9 
     10 std::vector<int> toVec[maxN];
     11 int father[maxN]; //father in the DFS tree
     12 int depth[maxN]; //depth in the DFS tree
     13 bool covered[maxN]; //whether the edge (x - father[x]) is covered (used in greedy algorithm)
     14 
     15 struct Range
     16 {
     17     int head, tail; //We guarantee that depth[head] >= depth[tail]
     18 
     19     void swapEndPoint()
     20     {
     21         if (depth[head] < depth[tail])
     22             std::swap(head, tail);
     23     }
     24     bool operator < (const Range& rhs) const
     25     {
     26         return depth[tail] > depth[rhs.tail] ||
     27                 (depth[tail] == depth[rhs.tail] && depth[head] < depth[rhs.head]);
     28         //high depth -> 0 --- 0 --- 0 --- 0 --- 0 -> low depth
     29         //greater:            x --------- x
     30         //less:         x --------------------- x
     31     }
     32 };
     33 
     34 Range range[maxM];
     35 int N, M;
     36 
     37 void init()
     38 {
     39     memset(father, 0, sizeof(father));
     40     memset(depth, 0, sizeof(depth));
     41     memset(covered, 0, sizeof(covered));
     42     for (int i = 1; i <= N; i++)
     43         toVec[i].clear();
     44 }
     45 
     46 /// @brief swap head and tail so that depth[head] >= depth[tail]
     47 ///        this function is called after depth[] is set, before sorting ranges for greedy algorithm
     48 void initRange()
     49 {
     50     for (int i = 0; i < M - N + 1; i++)
     51         range[i].swapEndPoint();
     52 }
     53 
     54 bool input()
     55 {
     56     scanf("%d%d", &N, &M);
     57     if (N == 0)
     58         return false;
     59 
     60     init();
     61     for (int u, v, i = 0; i < N - 1; i++) //(N - 1) Edges in DFS tree
     62     {
     63         scanf("%d%d", &u, &v);
     64         toVec[u].push_back(v);
     65         toVec[v].push_back(u);
     66     }
     67     for (int u, v, i = N - 1; i < M; i++)
     68     {
     69         scanf("%d%d", &u, &v);
     70         range[i - N + 1] = {u, v}; //The end points may be swapped later
     71     }
     72 
     73     return true;
     74 }
     75 
     76 ///@brief DFS process, setting depth[] and father[]
     77 void dfs(int cur, int last)
     78 {
     79     father[cur] = last;
     80     depth[cur] = depth[last] + 1;
     81     for (auto to: toVec[cur])
     82     {
     83         if (to == last)
     84             continue;
     85         dfs(to, cur);
     86     }
     87 }
     88 
     89 ///@brief wrapper of DFS function
     90 void setDepthAndFather()
     91 {
     92     depth[0] = 0;
     93     dfs(1, 0); 
     94 }
     95 
     96 int solve()
     97 {
     98     setDepthAndFather();
     99     initRange();
    100     std::sort(range, range + M - N + 1); //(M - N + 1) Edges that does not belong to the DFS tree
    101 
    102     ///@return last if edge (last, father[last]) should be covered
    103     ///        0 if no edge should be covered in this chain
    104     auto getCoverEdge = [] (const Range& rg) -> int
    105     {
    106         int last = rg.head;
    107 
    108         //higher depth -> head -> tail -> lower depth
    109         for (int cur = rg.head; cur != rg.tail; cur = father[cur])
    110         {
    111             if (covered[cur])
    112                 return 0;
    113             last = cur;
    114         }
    115         return last;
    116     };
    117 
    118 //    ///@debug
    119 //    for (int i = 1; i <= N; i++)
    120 //        printf("father[%d] = %d, depth[%d] = %d
    ", i, father[i], i, depth[i]);
    121 
    122     int ans = 0;
    123     for (int i = 0; i < M - N + 1; i++)
    124     {
    125         int coverId = getCoverEdge(range[i]);
    126         if (coverId == 0)
    127             continue;
    128         ans += 1;
    129         covered[coverId] = true;
    130     }
    131 
    132     return ans;
    133 }
    134 
    135 int main()
    136 {
    137     while (input())
    138         printf("%d
    ", solve());
    139     return 0;
    140 }
  • 相关阅读:
    中国各省份绘制SVG地图数据
    cookie sessionStorage localStorage 区别
    CSS隐藏元素的几种方法
    15款增强web体验的Javascript库
    HTTP状态码
    IE CSS HACK
    网站性能优化(Yahoo 35条)
    几款超实用的 CSS 开发工具
    Linux 日志切割工具cronolog详解
    linux 文件搜索命令
  • 原文地址:https://www.cnblogs.com/Onlynagesha/p/8448560.html
Copyright © 2020-2023  润新知