• 吴恩达 机器学习 神经网络编程代码练习笔记


    编程要求:

    In this exercise, you will implement the backpropagation algorithm for neural networks and apply it to the task of hand-written digit recognition.


    1.总体的思路

    1.确定layer的层数,和每层layer的大小,这里确定包含最基本的三层结构(输入,隐含,输出)

    2.随机初始化参数的大小

    3.计算costfuntion,和神经网络各层的参数偏导(BP实现的过程)(梯度下降法)

    4.利用梯度下降法(Matlab中用fminuc或fmincg(较fminuc快))多次迭代,求出参数

    5.利用偏导的数学定义与用BP实现的偏导作比较,确保BP的过程是正确的

    6.最后计算预测的准确率

    2.关键代码段

    1.初始化各层的参数

    function W = randInitializeWeights(L_in, L_out)

    W = zeros(L_out, 1 + L_in);

    epsion_init = 0.12;
    W = rand(L_out,L_in+1)*2*epsion_init - epsion_init;

    end

    2.计算代价函数和利用BP求偏导

    function [J grad] = nnCostFunction(nn_params, ...
                                       input_layer_size, ...
                                       hidden_layer_size, ...
                                       num_labels, ...
                                       X, y, lambda)

    Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                     hidden_layer_size, (input_layer_size + 1));
    Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                     num_labels, (hidden_layer_size + 1));

    m = size(X, 1);

    X = [ones(m,1) X];
    HidenOutput = sigmoid(X*Theta1');%z2=a1*theta1;  a2=sigmoid(z2);
    HidenOutput = [ones(m,1) HidenOutput];%train_size*hiddenlayer_size+1
    Hx = sigmoid(HidenOutput*Theta2');%train_size*outputsize
    ;

    Y=zeros(m,num_labels);%train_size*10
    for c =1:num_labels
        y_temp=(y==c);
        Y(:,c) = y_temp;
        J = J+sum(-y_temp'*log(Hx(:,c))-(1-y_temp)'*log(1-Hx(:,c)));
    end

    %regulation

    J=J/m+lambda*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)))/(2*m);

    %BP的实现过程
    det3 =Hx - Y;%train_szie*outputSize
    det2 =det3*Theta2.* sigmoidGradient([ones(m,1) X*Theta1']);%train_size*hiddenlayer_size+1
    det2 = det2(:,2:end);%train_size*hiddenlayer_size
    %det2 =det3*Theta2(:,2:end).* sigmoidGradient(X*Theta1');

    Theta1_grad =  (det2'*X)/m;%hiddenlayer_size*inputlayer_size
    Theta1_grad(:,2:end) =Theta1_grad(:,2:end)+lambda*Theta1(:,2:end)/m;

    Theta2_grad =  (det3'*HidenOutput)/m;%output
    size*(hiddenlayer_size+1)
    Theta2_grad(:,2:end) =Theta2_grad(:,2:end)+lambda*Theta2(:,2:end)/m;
    % Unroll gradients
    grad = [Theta1_grad(:) ; Theta2_grad(:)];
    end

    3.利用偏导的定义,检查BP

    function numgrad = computeNumericalGradient(J, theta)
    numgrad = zeros(size(theta));
    perturb = zeros(size(theta));
    e = 1e-4;
    for p = 1:numel(theta)
        % Set perturbation vector
      perturb(p) = e;
      loss1 = J(theta - perturb);
      loss2 = J(theta + perturb);
       % Compute Numerical Gradient
      numgrad(p) = (loss2 - loss1) / (2*e);
      perturb(p) = 0;

    end

    4.训练和预测

    [nn_params, cost] = fmincg(costFunction, initial_nn_params, options);

    pred = predict(Theta1, Theta2, X);

    fprintf(' Training Set Accuracy: %f ', mean(double(pred == y)) * 100);

  • 相关阅读:
    xml读写
    scrollWidth,clientWidth与offsetWidth的区别
    DIV+CSS设计时浏览器兼容性
    访问IIS客户端出现server application error解决方案
    网站局域网内不能访问解决方法之一
    xml学习笔记(一)
    文本编辑器FCKeditor
    业务部门需要IT人员为其提供什么
    程序员与VBA之怪现状
    你的代码完成了吗?(之一)——可用性和易用性
  • 原文地址:https://www.cnblogs.com/OnMyWay321/p/5093856.html
Copyright © 2020-2023  润新知