• UVA12163 游戏


     题目大意

    现在有两个人在一个n个结点的有向图上玩一个双人游戏,保证图中无环和自圈。游戏的规则如下:
    1.初始的时候$i$号点有一个正权值$value_i$
    2.两名玩家依次操作,每个玩家在当前回合可以选择一个具有如下性质的点
    -该点的权值为正
    -该点具有至少一条出边
    如果不存在这样子的点,那么当前回合的玩家输掉整局游戏
    3.当某名玩家选定一个点以后,将该点的$value$减一,并将$K_i$个该点出边连向的点的$value$加一,这$K_i$个点由当前玩家选择,并允许选择重复的点。
    现在给出整个有向图和$K_i$,每次询问给定每个点的$value$,判断先手玩家是否存在必胜策略。

    $nleq 100$,每个点的出边数量不超过$17$。

    题解

    由于每一步操作只令$value_i$的值$-1$,所以可以把“在$x$点有$1$的权值”看做“以$x$点为起点开始一局游戏”。

    考虑在$x$点做两局游戏一定是后手赢,因为不论执先手的人在某一局子游戏进行操作,后手只需要在另一局进行对称操作即可。

    所以只关心$value$的奇偶性。

    由于每一个点的出边不超过$17$,所以以一个点为起点的子游戏,其后继是可枚举的。

    具体的,对于没有出边的点$x,Sg_x=0$。

    否则枚举每一条出边是否改变出边指向的点$y$的游戏的次数的奇偶性,将游戏次数奇偶性被改变的后继的点集记为$S$,设这$S$个点的$Sg$值的异或和为$F_S$,则$$Sg_x=mex{F_S}(|S|leq K_i,|S|equiv K_imod x)$$

    即枚举每一个$x$点出发能到达的所有后继状态,每一个后继状态都有若干个子游戏组成,其根据$Sg$定理,$Sg$值为每一个子游戏的$Sg$值异或和,所以对所有个后继状态$Sg$值求$mex$即可。

    对于每一次询问,对于所有的$x$满足以$x$点进行了奇数次游戏,则将这些$Sg_x$异或起来和,若为$0$则先手必败,负责先手必胜。

    复杂度为$O(T(2^{17}n+Qn))$

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #define LL long long
    #define M 200
    #define N 540000
    using namespace std;
    int read(){
        int nm=0,fh=1; int cw=getchar();
        for(;!isdigit(cw);cw=getchar()) if(cw=='-') fh=-fh;
        for(;isdigit(cw);cw=getchar()) nm=nm*10+(cw-'0');
        return nm*fh;
    }
    int n,m,sz[M],to[M][20],tmp,K[M],val,sg[M],bt[N],G[N],F[N];
    void link(int x,int y){to[x][++sz[x]]=y;} bool vs[N];
    void DP(int x){
        if(sg[x]!=-1) return; if(!sz[x]){sg[x]=0;return;}
        for(int i=1;i<=sz[x];i++) DP(to[x][i]);
        for(int i=1;i<=sz[x];i++) G[1<<(i-1)]=sg[to[x][i]];
        int MAXN=(1<<sz[x]); F[0]=sg[x]=0;
        for(int i=1;i<MAXN;i++) F[i]=(F[i^(i&(-i))]^G[i&(-i)]);
        for(int i=0;i<MAXN;i++) if(bt[i]<=K[x]&&!((K[x]^bt[i])&1)) vs[F[i]]=true;
        while(vs[sg[x]]) ++sg[x]; for(int i=0;i<MAXN;i++) vs[F[i]]=false;
    }
    int main(){
        for(int i=1;i<(1<<19);i++) bt[i]=bt[i>>1]+(i&1);
        memset(vs,false,sizeof(vs));
        for(int Qs=read(),nq=1;nq<=Qs;nq++,putchar('
    ')){
            printf("Game#%d:
    ",nq),memset(sg,-1,sizeof(sg));
            n=read(),m=read(),memset(sz,0,sizeof(sz));
            for(int i=1;i<=m;i++){int x=read(),y=read();link(x+1,y+1);}
            for(int i=1;i<=n;i++) K[i]=read();
            for(int i=1;i<=n;i++) DP(i);
            for(int rm=1,rs=0,Qr=read();rm<=Qr;rm++,rs=0){
                for(int i=1;i<=n;i++) val=read(),rs^=((val&1)*sg[i]);
                printf("Round#%d: ",rm),puts(rs?"WINNING":"LOSING");
            }
        }
        return 0;
    }
  • 相关阅读:
    TCP通信丢包原因总结
    根据日志查看QPS
    mysql:备份、复制
    集群
    redis性能提升
    redis源码——多机数据库的实现
    redis源码——单机数据库的实现
    redis 设置过期Key 的 maxmemory-policy 六种方式
    字符处理
    贝塞尔曲线
  • 原文地址:https://www.cnblogs.com/OYJason/p/9794845.html
Copyright © 2020-2023  润新知