• ConcurrentHashMap笔记


    概览:

       内部存储的数据结构为:数组+链表+红黑树,图示:

       

    重要的属性(内部类):

    //存放元素的数组
    transient volatile Node<K,V>[] table;
    //数组中的Node节点
    static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;//Key计算出来的Hash值
            final K key;//Key
            volatile V val;//Value
            volatile Node<K,V> next;//链表的下一个节点
    
            Node(int hash, K key, V val, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.val = val;
                this.next = next;
            }
            ...//省略
        }
    //红黑树中的节点
    static final class TreeNode<K,V> extends Node<K,V> {
            TreeNode<K,V> parent;  // red-black tree links
            TreeNode<K,V> left;       //左子节点
            TreeNode<K,V> right;    //右子节点
            TreeNode<K,V> prev;    //
            boolean red;
            ...//省略    
        }
    
    //组合TreeNode
    static final class TreeBin<K,V> extends Node<K,V> {
            TreeNode<K,V> root;
            volatile TreeNode<K,V> first;
     }
    
    //内部类

    方法分析

     /** Implementation for put and putIfAbsent */
        final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new NullPointerException();
            int hash = spread(key.hashCode());
            int binCount = 0;
            for (Node<K,V>[] tab = table;;) {
                Node<K,V> f; int n, i, fh;
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();//初始化数组大小,默认16
                //数组指定位置元素为空,直接插入
                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                    if (casTabAt(tab, i, null,
                                 new Node<K,V>(hash, key, value, null)))
                        break;                   // no lock when adding to empty bin
                }
                else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {//不为空,链表存储
                    V oldVal = null;
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            if (fh >= 0) {
                                binCount = 1;
                                for (Node<K,V> e = f;; ++binCount) {
                                    K ek;
                                    if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                         (ek != null && key.equals(ek)))) {
                                        oldVal = e.val;
                                        if (!onlyIfAbsent)
                                            e.val = value;
                                        break;
                                    }
                                    Node<K,V> pred = e;
                                    if ((e = e.next) == null) {
                                        pred.next = new Node<K,V>(hash, key,
                                                                  value, null);
                                        break;
                                    }
                                }
                            }
                            //红黑树
                            else if (f instanceof TreeBin) {
                                Node<K,V> p;
                                binCount = 2;
                                if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                               value)) != null) {
                                    oldVal = p.val;
                                    if (!onlyIfAbsent)
                                        p.val = value;
                                }
                            }
                        }
                    }
                    if (binCount != 0) {
                        //链表长度大于8,转为红黑树存储
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);
                        if (oldVal != null)
                            return oldVal;
                        break;
                    }
                }
            }
            addCount(1L, binCount);
            return null;
        }
    /**
         * Replaces all linked nodes in bin at given index unless table is
         * too small, in which case resizes instead.
         */
        private final void treeifyBin(Node<K,V>[] tab, int index) {
            Node<K,V> b; int n, sc;
            if (tab != null) {
                if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                    tryPresize(n << 1);//扩容数组
                else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                    synchronized (b) {
                        if (tabAt(tab, index) == b) {
                            TreeNode<K,V> hd = null, tl = null;
                  //遍历链表,构造TreeNode
    for (Node<K,V> e = b; e != null; e = e.next) { TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; }
    //构建红黑树 setTabAt(tab, index,
    new TreeBin<K,V>(hd)); } } } } }
     public V get(Object key) {
            Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
            int h = spread(key.hashCode());
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (e = tabAt(tab, (n - 1) & h)) != null) {
                if ((eh = e.hash) == h) {
                    if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                        return e.val;
                }
                else if (eh < 0)//红黑树取值
                    return (p = e.find(h, key)) != null ? p.val : null;
    //链表取值
    while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }

    写在最后:

       为什么使用红黑树? 

          红黑树的特性:

             1、节点是红色或者黑色

             2、根是黑色

             3、所有叶子都是黑色

             4、每个红色节点必须有2个黑色的子节点

             5、从任一节点到其每个叶子的所有简单路径包含相同数目的黑色节点

          根据特性5,从根的最长路径不可能>2倍的最短路径,所以这样的二叉树是平衡的;插入、删除、查询操作比较高效

    拓展阅读

        1、红黑树介绍    2、深入分析ConcurrentHashMap1.8的扩容实现

  • 相关阅读:
    分布式系统的负载均衡以及ngnix负载均衡的五种策略
    排序
    servlet+forward和direct区别
    https、socket、http协议
    类加载机制+变量初始化
    MySQL中的索引
    线程状态
    JVM的分区+查看GC对象是否存活+3种GC算法+7种垃圾收集器+如何减少GC次数
    ORACLE索引监控的简单使用
    如何验证所做的AIX系统备份是否可用
  • 原文地址:https://www.cnblogs.com/Non-Tecnology/p/6560903.html
Copyright © 2020-2023  润新知