题意:问[1,n]有几个是m^k的形式(m>0,k>1, n<=1e18)
题解:枚举m,会发现很多,所以枚举k,可以发现k<=63那么只要每个k计算pow(n , 1/k),接下来去重,可以用容斥来做,2^61的复杂度,这里考虑m^k = m^(k1+k2)一个合数可以分解为素数,那么只要对素数容斥就可以了
#include <bits/stdc++.h> #define maxn 101000 #define INF 0x3f3f3f3f typedef long long ll; using namespace std; const double eps = 1e-6; ll a[100]; int main(){ ll num, sum, cnt, ans, n, t; num = 0; for(ll i=2, j;i<=63;i++){ for(j=2;j*j<=i;j++){ if(i%j == 0) break; } if(j*j>i) a[num++] = i; } while(~scanf("%lld", &n)){ ans = t = cnt = 0; while((1LL<<a[t]) <= n) t++; for(ll i=1;i<(1LL<<t);i++){ sum = 1;cnt = 0; for(ll j=0;j<t;j++){ if(i&(1LL<<j)) sum *= a[j],cnt++; } if(sum<=63&&(1LL<<sum)<=n){ if(cnt&1) ans += (int)(eps+pow(n, 1.0/sum))-1; else ans -= (int)(eps+pow(n, 1.0/sum))-1; } if(cnt%2 == 0) ans--; else ans++; } printf("%lld ", ans); } return 0; }