• 【题解】Luogu P2047 社交网络总结 (Floyd算法,最短路计数)


    题目描述

    在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。在一个社交圈子里有n个人,人与人之间有不同程度的关系。我 们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两 个人之间的关系越密切。

    我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利, 即这些结点对于s 和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。

    考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下:I(v)=∑(s<>v,t<>v)Cs,t(v) / Cs,t

    令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义

    为结点v在社交网络中的重要程度。

    为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。

    现在给出这样一幅描述社交网络s的加权无向图,请你求出每一个结点的重要程度。

    输入输出格式

    输入格式:

    输入第一行有两个整数,n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。

    接下来m行,每行用三个整数a, b, c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。

    输出格式:

    输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

    输入输出样例

    输入样例#1:
    4 4
    1 2 1
    2 3 1
    3 4 1
    4 1 1
    输出样例#1:
    1.000
    1.000
    1.000
    1.000

    说明

    对于1号结点而言,只有2号到4号结点和4号到2号结点的最短路经过1号结点,而2号结点和4号结点之间的最短路又有2条。因而根据定义,1号结点的重要程度计算为1/2+1/2=1。由于图的对称性,其他三个结点的重要程度也都是1。

    50%的数据中:n ≤10,m ≤45

    100%的数据中:n ≤100,m ≤4 500,任意一条边的权值c是正整数,满足:1 ≤c ≤1 000。

    所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过10^10。

    Solution:

    这道题目思路比较简单:

    1.预处理出最短路,因为范围小,采用弗洛伊德算法预处理

    2.处理出从i到j点中间最短路条数[这一步算是整个代码中的精华,也是最难的的一部分了吧(我认为的最难,蒟蒻哎ORZ)]

    3.就是计算答案啦啦

    然后呢,这题就是思考那个奇奇怪怪的计算式子了

    I(v)=∑(s<>v,t<>v)Cs,t(v) / Cs,t

    A.首先呢解释下这个式子:

      a.(s<>v,t<>v)     s!=v&&t!=v 很好理解吧

      b.Cs,t(v)   是所有s到t的最短路中,经过v的条数

      c.Cs,t       是从s到t的最短路条数

    B.然后思路步骤一很简单,就不说了,不清楚可以自行问度娘

    C.步骤二的方法有很多我知道有两种

      a.在弗洛伊德求最短路时同时更新路径条数[我用的这种,真的好容易打%%%想出来这种方法的人]

     1 for(int k=1;k<=n;k++)//枚举中间点
     2     for(int i=1;i<=n;i++)//枚举开头
     3     for(int j=1;j<=n;j++)//枚举结尾
     4     {
     5         if(dis[i][k]==INF&&dis[k][j]==INF)continue;//INF是初始化定义的最大值
    6 if(dis[i][j]>dis[i][k]+dis[k][j])//满足更新条件 7 { 8 dis[i][j]=dis[i][k]+dis[k][j];//更新最短路径的值 9 edge[i][j]=edge[i][k]*edge[k][j];//更新最短路径条数 10 continue; 11 } 12 if(dis[i][j]==dis[i][k]+dis[k][j])//和已算出来的最短路长度相等 13 {edge[i][j]+=edge[i][k]*edge[k][j];}//累加路径条数 14 }//dis 长度 edge 条数

      b.这种方法见我的另一篇博客,里面讲的很详细,这个代码打的重点在  求入度次数和拓扑排序

    D.步骤三计算答案,这个重点就是在处理Cs,t(v)

      1.dis[s][t]=dis[s][v]+dis[v][t]   这个很好理解吧   如果S-V的最短距离加上V-T的最短距离等于S-T的最短距离   那么V一定在S-T的最短路上

      2.所以  Cs,t(v)= S-V的路径条数*V-T的路径条数

      3.另外 要枚举所有的 S - T  注意式子的(s<>v,t<>v)

      4.应该没了  顺便贴下我这部分的代码

     1 for(int i=1;i<=n;i++)
     2     {
     3         for(int j=1;j<=n;j++)
     4         for(int k=1;k<=n;k++)
     5         {
     6             if(i==j||j==k||i==k)continue;
     7             if(dis[j][i]+dis[i][k]==dis[j][k])
     8                 ans[i]+=(1.0*edge[j][i]*edge[i][k])/edge[j][k];
     9         }
    10     }

      最后,还要用拓扑排序的同学注意一点就是:重边,某点的入度被减为0[每有一条边指向点K,点K入度数减一,更新到K点路径条数]才能入队列,向下传递记录条数的数值。否则来一条边向下传一次,会使条数计算错误。[悲伤地是,我没改对这个注意的点,还是只有60分 ORZ][另一种方法过了]

    贴一下整体AC代码吧

     1 #include<iostream>
     2 #include<cmath>
     3 #include<cstdio>
     4 #include<cstring>
     5 #define LL long long
     6 using namespace std;
     7 int read()
     8 {
     9     int x=0;char ch=getchar();
    10     while(ch<'0'||ch>'9')ch=getchar();
    11     while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
    12     return x;
    13 }
    14 int n,m;
    15 LL INF;
    16 LL dis[100+10][100+10],edge[100+10][100+10];
    17 double ans[100+10];
    18 int main()
    19 {
    20     freopen("bestlink.in","r",stdin);
    21     freopen("bestlink.out","w",stdout);
    22     n=read();m=read();
    23     memset(dis,0x7f,sizeof(dis));
    24     memset(edge,0,sizeof(dis));
    25     INF=dis[1][1];
    26     for(int i=1;i<=m;i++)
    27     {
    28         LL x,y,z;
    29         x=read();y=read();z=read();
    30         dis[x][y]=dis[y][x]=z;
    31         edge[x][y]=edge[y][x]=1;
    32     }
    33     for(int k=1;k<=n;k++)
    34     for(int i=1;i<=n;i++)
    35     for(int j=1;j<=n;j++)
    36     {
    37         if(dis[i][k]==INF&&dis[k][j]==INF)continue;
    38         if(dis[i][j]>dis[i][k]+dis[k][j])
    39         {
    40             dis[i][j]=dis[i][k]+dis[k][j];
    41             edge[i][j]=edge[i][k]*edge[k][j];
    42             continue;
    43         }
    44         if(dis[i][j]==dis[i][k]+dis[k][j])
    45         {edge[i][j]+=edge[i][k]*edge[k][j];}
    46     }
    47 /*    for(int i=1;i<=n;i++)
    48     for(int j=1;j<=n;j++)cout<<i<<' '<<j<<' '<<edge[i][j]<<endl;*/
    49     for(int i=1;i<=n;i++)
    50     {
    51         for(int j=1;j<=n;j++)
    52         for(int k=1;k<=n;k++)
    53         {
    54             if(i==j||j==k||i==k)continue;
    55             if(dis[j][i]+dis[i][k]==dis[j][k])
    56                 ans[i]+=(1.0*edge[j][i]*edge[i][k])/edge[j][k];
    57         }
    58     }
    59     for(int i=1;i<=n;i++)
    60         printf("%0.3f
    ",ans[i]);
    61     return 0;
    62 }
  • 相关阅读:
    项目原型设计
    项目选题报告 (基于云的胜利冲锋队)
    基于云的胜利冲锋队 团队团队展示
    团队作业第三次-项目原型设计
    团队作业第二次-项目选题报告
    团队作业第一次-团队团队展示
    周测、代码
    异常
    5.13重点
    接口
  • 原文地址:https://www.cnblogs.com/Ning-Mew/p/7600611.html
Copyright © 2020-2023  润新知