理论部分请看 :三维空间刚体运动
一、Eigen的使用
首先安装 Eigen:
sudo apt-get install libeigen3-dev
一般都安装在
/usr/include/eigen3/
中
代码:
#include <iostream>
#include <ctime>
using namespace std;
//Eigen 部分
#include <Eigen/Core>
//稠密矩阵的代数运算
#include <Eigen/Dense>
#define MATRIX_SIZE 50
//本程序演示了 Eigen 基本类型的使用
int main(int argc,char** argv){
//声明一个 2×3 的 float 矩阵
Eigen::Matrix<float,2,3> matrix_23;
//Eigen 通过 typedef 提供了许多内置类型,不过底层仍然是 Eigen::Matrix
//例如 Vector3d 实质上是 Eigen::Matrix<double,3,1>
Eigen::Vector3d v_3d;
//Matrix3d 实质上是 Eigen::Matrix<double,3,3>
Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero();
//如果不确定矩阵大小,可以使用动态大小的矩阵
Eigen::Matrix<double,Eigen::Dynamic,Eigen::Dynamic> matrix_dynamic;
//更简单的
Eigen::MatrixXd matrix_x;
//矩阵操作
//输入数据
matrix_23 << 1,2,3,4,5,6;
//输出
cout<<"2*3矩阵 "<<matrix_23<<endl;
//用()访问矩阵中的元素
for(int i = 0;i<1;i++)
for(int j = 0;j<2;j++)
cout<<"矩阵元素: "<<matrix_23(i,j)<<endl;
v_3d << 3,2,1;
//矩阵和向量相乘
//Eigen::Matrix<double,2,1> result_wrong_type = matrix_23 * v_3d; 混合两种不同类型的矩阵,这是错误的
//应该这样显示转换
Eigen::Matrix<double,2,1> result = matrix_23.cast<double>() * v_3d;
cout<<"和向量相乘:"<<result<<endl;
//同样不能搞错矩阵的维度
//试着取消下面的注释,看看会报什么错
//Eigen::Matrix<double,2,3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;
//一些矩阵运算
matrix_33 = Eigen::Matrix3d::Random();
cout<<"矩阵运算:"<<matrix_33<<endl<<endl;
cout<<"转置:"<<matrix_33.transpose()<<endl; //转置
cout<<"各元素和:"<<matrix_33.sum()<<endl; //各元素和
cout<<"迹:"<<matrix_33.trace()<<endl; //迹
cout<<"数乘:"<<10 * matrix_33<<endl; //数乘
cout<<"逆:"<<matrix_33.inverse()<<endl; //逆
cout<<"行列式:"<<matrix_33.determinant()<<endl; //行列式
//特征值
//实对称矩阵可以保证对角化成功
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver (matrix_33.transpose() * matrix_33);
cout<<"Eigen values = "<<eigen_solver.eigenvalues()<<endl;
cout<<"Eigen vectors = "<<eigen_solver.eigenvectors()<<endl;
//解方程
//求解 matrix_NN * x = v_Nd 这个方程
//N 的大小在上卖弄宏里定义,矩阵由随机数生成
//直接求逆是最直接的,但是运算量大
Eigen::Matrix<double,MATRIX_SIZE,MATRIX_SIZE> matrix_NN;
matrix_NN = Eigen::MatrixXd::Random(MATRIX_SIZE,MATRIX_SIZE);
Eigen::Matrix<double,MATRIX_SIZE,1> v_Nd;
v_Nd = Eigen::MatrixXd::Random(MATRIX_SIZE,1);
clock_t time_stt = clock(); //计时
//直接求逆
Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse() * v_Nd;
cout<<"time use in normal inverse is "<<1000 * (clock() - time_stt) / (double)CLOCKS_PER_SEC <<" ms"<<endl;
//通常用矩阵分解来求,例如 QR 分解,速度会快很多
time_stt = clock();
x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
cout<<"time use in Qr composition is "<<1000 * (clock() - time_stt) / (double) CLOCKS_PER_SEC<<" ms"<<endl;
return 0;
}
编译方法为:
在源代码所在文件夹再创建一个 CMakeLists.txt,写入:
cmake_minimum_required (VERSION 2.8)
include_directories("/usr/include/eigen3")
project(EigenMatrix)
add_executable(eigenMatrix eigenMatrix.cpp)
然后
cmake .
make
再运行就可以了
./eigenMatrix
程序中已经给出较详细注释,这里就不在解释了
二、Eigen 几何模块
代码:
#include <iostream>
#include <cmath>
using namespace std;
#include <Eigen/Core>
#include <Eigen/Geometry>
int main(int argc,char** argv){
Eigen::Matrix3d rotation_matrix = Eigen::Matrix3d::Identity();
//旋转向量使用 AngleAxis,它底层不直接是 Matrix3d,但运算可以当做矩阵(因为重载了运算符)
Eigen::AngleAxisd rotation_vector (M_PI/4,Eigen::Vector3d(0,0,1)); //沿Z轴旋转45度
cout .precision(3);
cout<<"rotation matrix =
"<<rotation_vector.matrix()<<endl; //用 matrix() 转换成矩阵
//也可以直接赋值
rotation_matrix = rotation_vector.toRotationMatrix();
//用 AngleAxis 可以进行坐标变换
Eigen::Vector3d v(1,0,0);
Eigen::Vector3d v_rotated = rotation_vector *v;
cout<<"(1,0,0) after rotation = "<<v_rotated.transpose()<<endl;
//或者用旋转矩阵
v_rotated = rotation_matrix *v;
cout<<"(1,0,0) after rotation = "<<v_rotated.transpose()<<endl;
//欧拉角:可以将旋转矩阵直接转换成欧拉角
Eigen::Vector3d euler_angles = rotation_matrix.eulerAngles(2,1,0); //ZYX 顺序,即yaw pitch roll 顺序
cout<<"yaw pitch roll = "<<euler_angles.transpose()<<endl;
//欧式变换矩阵使用 Eigen::Isometry
Eigen::Isometry3d T = Eigen::Isometry3d::Identity(); //虽然称为3d,实质上是4×4矩阵
T.rotate(rotation_vector); //按照rotation_vector 进行旋转
T.pretranslate(Eigen::Vector3d(1,3,4)); //把平移向量设成(1,3,4)
cout<<"Transform matrix =
"<<T.matrix()<<endl;
//用变换矩阵进行坐标变换
Eigen::Vector3d v_transformed = T*v; //相当于 R*v + t
cout<<"v transformed = "<<v_transformed.transpose()<<endl;
//相对于仿射和射影变换,使用 Eigen::Affine3d 和Eigen::Projective3d 即可,略
//四元数
//可以直接把 AngleAxis 赋值给四元数,反之亦然
Eigen::Quaterniond q = Eigen::Quaterniond (rotation_vector);
cout<<"quaternion =
"<<q.coeffs()<<endl; //注意 coeffs 的顺序是 (x,y,z,w) ,w 为实部,前三者为虚部
//也可以把旋转矩阵赋值给它
q = Eigen::Quaterniond(rotation_matrix);
cout<<"quaternion =
"<<q.coeffs()<<endl;
//使用四元数旋转一个向量,使用重载的乘法即可
v_rotated = q * v; //数学上是 qvq^{-1}
cout<<"(1,0,0) after rotation = "<<v_rotated.transpose()<<endl;
return 0;
}
CMakeLists.txt:
cmake_minimum_required(VERSION 2.8)
include_directories("/usr/include/eigen3")
project(UseGeometry)
add_executable(useGeometry useGeometry.cpp)
编译运行方法同上。