问题 I: T-shirt
时间限制: 1 Sec 内存限制: 64 MB题目描述
JSZKC is going to spend his vacation!
His vacation has N days. Each day, he can choose a T-shirt to wear. Obviously, he doesn’t want to wear a singer color T-shirt since others will consider he has worn one T-shirt all the time.
To avoid this problem, he has M different T-shirt with different color. If he wears A color T-shirt this day and B color T-shirt the next day, then he will get the pleasure of f[A][B].(notice: He is able to wear one T-shirt in two continuous days but may get a low pleasure)
Please calculate the max pleasure he can get.
His vacation has N days. Each day, he can choose a T-shirt to wear. Obviously, he doesn’t want to wear a singer color T-shirt since others will consider he has worn one T-shirt all the time.
To avoid this problem, he has M different T-shirt with different color. If he wears A color T-shirt this day and B color T-shirt the next day, then he will get the pleasure of f[A][B].(notice: He is able to wear one T-shirt in two continuous days but may get a low pleasure)
Please calculate the max pleasure he can get.
输入
The input file contains several test cases, each of them as described below.
- The first line of the input contains two integers N,M (2 ≤ N≤ 100000, 1 ≤ M≤ 100), giving the length of vacation and the T-shirts that JSZKC has.
- The next follows M lines with each line M integers. The jth integer in the ith line means f[i][j](1<=f[i][j]<=1000000).
输出
One line per case, an integer indicates the answer
样例输入
3 2
0 1
1 0
4 3
1 2 3
1 2 3
1 2 3
样例输出
2
9
meaning
给一个m×m的矩阵,data[i][j]表示第一天在i点第二天在j点的收益,问n天的最大收益。
solution
f[k][i][j] 表示第一天在i点,2^k天后在j点的最大收益。
f[0][i][j] = data[i][j];
f[k][i][j] = max(f[k][i][j],f[k-1][i][p]+f[k-1][p][j]);
d[i][j] 表示从i点到j点的最大收益。
code
#define IN_LB() freopen("C:\Users\acm2018\Desktop\in.txt","r",stdin)
#define OUT_LB() freopen("C:\Users\acm2018\Desktop\out.txt","w",stdout)
#define IN_PC() freopen("C:\Users\hz\Desktop\in.txt","r",stdin)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxm = 105;
ll f[20][maxm][maxm];
ll d[2][maxm][maxm];
int main() {
// IN_LB();
int n,m;
while(scanf("%d%d",&n,&m)!=EOF) {
memset(f,0,sizeof f);
memset(d,0,sizeof d);
for(int i=0; i<m; i++) {
for(int j=0; j<m; j++) {
scanf("%lld",&f[0][i][j]);
}
}
for(int k=1; k<20; k++)
for(int l=0; l<m; l++)
for(int i=0; i<m; i++)
for(int j=0; j<m; j++)
f[k][i][j] = max(f[k][i][j],f[k-1][i][l]+f[k-1][l][j]);
n--;
int cnt = 0;
for(int k=19; k>=0; k--) {
if(n>(1<<k)) {
n-=(1<<k);
for(int l = 0; l<m; l++) {
for(int i=0; i<m; i++) {
for(int j=0; j<m; j++) {
d[cnt][i][j]=max(d[cnt][i][j],d[cnt^1][i][l]+f[k][l][j]);
}
}
}
cnt^=1;
}
}
if(n==1) {
for(int l = 0; l<m; l++) {
for(int i=0; i<m; i++) {
for(int j=0; j<m; j++) {
d[cnt][i][j]=max(d[cnt][i][j],d[cnt^1][i][l]+f[0][l][j]);
}
}
}
}
ll ans = 0;
for(int i=0; i<m; i++) {
for(int j=0; j<m; j++) {
ans = max(ans,d[cnt][i][j]);
}
}
printf("%lld
",ans);
}
return 0;
}